

IBM PL/I for MVS & VM
Compiler and Run-Time Migration Guide

Release 1.1

Document Number SC26-3118-01

 Note!

Before using this information and the product it supports, be sure to read the general information under “Notices”
on page vi.

Second Edition (June 1995)

This edition applies to Version 1 Release 1.1 of IBM PL/I for MVS & VM (named IBM SAA AD/Cycle PL/I MVS & VM for Release
1.0), 5688-235, and to any subsequent releases until otherwise indicated in new editions or technical newsletters. Make sure you
are using the correct edition for the level of the product.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not stocked at the
address below.

A form for readers' comments is provided at the back of this publication. If the form has been removed, address your comments to:

IBM Corporation, Department J58
P.O. Box 49023
San Jose, CA, 95161-9023
United States of America

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes
appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1964, 1995. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

 Contents

Notices . vi
Programming Interface Information . vi
Trademarks . vi

Chapter 1. Introduction . 1
New Names for IBM Products . 1
Run-time Environment for PL/I for MVS & VM . 2
Debugging Facility for PL/I for MVS & VM . 2
Using Your Documentation . 2

Where to Look for More Information . 3

Chapter 2. Considerations Before Migrating 4
Differences in PLICALLA and PLICALLB Support 4

PLICALLA Considerations . 4
PLICALLB Considerations . 6

Differences in Preinitialization Support . 9
Differences in PLISRTx Support . 10
Differences in Multitasking Support . 10
Differences in DATE/TIME Built-In Functions . 13
Differences in User Return Code . 13
Differences in Condition Handling . 13
Differences in Run-Time Messages . 15
Differences in PLIDUMP . 15
Differences between Debugging Tools . 16
Differences in Run-Time Options . 17
Differences in Storage Report . 19
Differences in Interlanguage Communication Support 19
Differences in Assembler Support . 20
Considerations for Better CPU and Storage Utilization 21

Improving CPU Utilization . 21
Improving Storage Utilization . 23
Improving Performance under Subsystems 23

Chapter 3. Installation Considerations . 24
Product Information . 24

MVS Requirements . 25
VM Requirements . 25

Considerations for Using Assembler User Exits 26
Compatibility Considerations . 26
Changes to Assembler User Exits . 27
Specific Considerations . 28

Considerations for Using High-Level Language User Exits 29
Considerations for Using Language Environment Abnormal Termination Exit . 30
Considerations for relinking the Shared Library 30

Chapter 4. Object and Load Module Considerations 32
OS PL/I Version 1 Object Module and Load Module Compatibility 32

OS PL/I Version 1 Release 5.1 . 32
OS PL/I Version 1 Release 5.0 . 34
OS PL/I Version 1 Release 3.0 - Release 4.0 34

 Copyright IBM Corp. 1964, 1995 iii

OS PL/I Version 1 Prior to Release 3.0 . 34
OS PL/I Version 2 Object Module and Load Module Compatibility 34
Summary of Support for OS PL/I Object and Load Modules 35

Chapter 5. Link-Edit Considerations . 36
Symbol Table Considerations . 36
NCAL Linkage Editor Option . 36
GENMOD for VM . 37
Using OS PL/I Math Routines . 37
Using Multitasking . 37
Using OS PL/I PLICALLA or PLICALLB Entry 37

Chapter 6. Compile-Time Considerations . 38
Dependency on Language Environment for MVS & VM 38
Large Arrays and Aggregates . 38
Compatibility Considerations for OS PL/I Version 1 Source Code 39
Differences in User Return Codes . 40
Storage Report Changes . 41
Compiler Message Changes . 41
Messages That PL/I Issues for Errors in the PLIXOPT String 42

Chapter 7. Subsystem Considerations . 43
CICS Considerations . 43

Updating CICS System Definition (CSD) File 43
Error Handling . 43
Support for IBMFXITA . 44
Macro-Level Interface . 44
Relinking CICS Applications . 44
SYSTEM(CICS) Compile-Time Option . 44
FETCHing a PL/I MAIN Procedure . 45
STACK Run-Time Option . 45
Run-Time Output . 45
Abend Codes Used by PL/I under CICS . 45
Shared Library Support . 45
Linking PL/I for MVS & VM Applications . 46

IMS Considerations . 46
Interfaces to IMS . 46
SYSTEM(IMS) Compile-Time Option . 46
PLICALLA Support in IMS . 46
PSB Language Options Supported . 47
Assembler Driving a PL/I Transaction . 47
Storage Usage Considerations . 47
Coordinated Condition Handling under IMS 48
Performance Enhancement with Library Retention(LRR) 49

DB2 Considerations . 49

Chapter 8. OS PL/I Coexistence with Language Environment 50
Coexistence under MVS non-CICS . 50

Coexistence under MVS CICS . 51
Coexistence under VM . 52

Chapter 9. Migration Aids . 53
OS PL/I Library Routine Replacement Tool . 53
OS PL/I Version 1 Release 5.1 Main Load Module ZAP 54

iv Compiler and Run-Time Migration Guide

OS PL/I Shared Library Replacement Tool . 55
OS PL/I Object Module Relinking Tool - APARs PN69803 56
Identifying Functions Used in an OS PL/I Load Module 56

Bibliography . 58
PL/I for MVS & VM Publications . 58
Language Environment for MVS & VM Publications 58
PL/I for OS/2 Publications . 58
CoOperative Development Environment/370 . 58
IBM Debug Tool . 58
Softcopy Publications . 58
Other Books You Might Need . 58

Index . 60

 Contents v

 Notices

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe any of the
intellectual property rights of IBM may be used instead of the IBM product,
program, or service. The evaluation and verification of operation in conjunction with
other products, except those expressly designated by IBM, are the responsibility of
the user.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood, NY 10594, U.S.A.

Programming Interface Information
This book is intended to help the customer migrate from previous releases of OS
PL/I to PL/I for MVS & VM and Language Environment for MVS & VM. This book
documents General-use Programming Interface and Associated Guidance
Information provided by PL/I for MVS & VM.

General-use programming interfaces allow the customer to write programs that
obtain the services of PL/I for MVS & VM.

 Trademarks
The following terms, denoted by an asterisk (*) in this publication, are trademarks of
the IBM Corporation in the United States or other countries or both:

AD/Cycle
C/370
CICS
CICS/ESA
COBOL/370
COBOL for MVS & VM
DB2
DFSORT
IBM

IMS/ESA
Language Environment
MVS/DFP
MVS/ESA
OpenEdition
OS/2
SAA
VM/ESA

vi Copyright IBM Corp. 1964, 1995

 Chapter 1. Introduction

This book contains information to help you migrate applications from previous
releases of OS PL/I to IBM Language Environment for MVS & VM (Language
Environment) and IBM PL/I for MVS & VM. It suggests solutions to problems that
arise because of differences in support between previous releases of OS PL/I and
PL/I for MVS & VM. It explains how to get compatibility support for your
applications when running previously compiled OS PL/I programs under Language
Environment.

This book also contains brief information about the debugging facilities for PL/I for
MVS & VM, IBM Debug Tool and IBM CoOperative Development Environment/370
(CODE/370), and refers to the Debug Tool and CODE/370 publications for more
details.

This book is for system programmers, application programmers, and IBM support
personnel who are involved in PL/I product migration. Prerequisite knowledge for
using this book is:

� A general understanding of your operating system
� Some knowledge of the PL/I language and options
� Some knowledge of how PL/I uses Language Environment for its run-time

environment

This books contains major changes in structure and information, so no change bars
(|) have been included in the document.

New Names for IBM Products
In 1994, IBM updated the naming-convention requirements for all products so that
customers can look at the name and immediately know on what platform a
particular product is supported. In order to comply with the new requirements,
some products changed their names for a new release even though the version
and product number remained the same. Anytime we refer to a product in this
book, we will use the new name. To help you know that we are referring to the
same product you recall by the old name, we are showing the naming differences
in the following table:

Table 1. Name Changes for Products Discussed in this Book

Old Name New Name

IBM SAA AD/Cycle C/370 (C/370) n/a

IBM C/C++ for MVS/ESA (C/C++) n/a

IBM SAA AD/Cycle COBOL/370, Release 1 IBM COBOL for MVS & VM (COBOL), Release 2

IBM SAA AD/Cycle Language Environment/370,
Release 3

IBM Language Environment for MVS & VM,
Release 4

IBM SAA AD/Cycle PL/I MVS & VM, Release 1 IBM PL/I for MVS & VM, Release 1.1

 Copyright IBM Corp. 1964, 1995 1

Run-time Environment for PL/I for MVS & VM
PL/I for MVS & VM uses Language Environment as its run-time environment. It
conforms to Language Environment architecture and shares the run-time
environment with other conforming languages such as C/370, C/C++, and COBOL.

Language Environment is a common run-time environment for its conforming
language compilers: C/370, C/C++, COBOL and PL/I for MVS & VM. It provides a
common set of run-time options and callable services. It also improves
interlanguage communication (ILC) between high-level languages (HLL) and
assembler by eliminating language-specific initialization and termination on each
ILC invocation. Language Environment provides compatibility support for existing
applications with a few restrictions that are described in this book.

Debugging Facility for PL/I for MVS & VM
There are two debugging facilities for PL/I for MVS & VM:

� IBM Debug Tool is packaged with PL/I for MVS & VM as an optional feature
and is a debugging tool for MVS and VM only.

� CODE/370 has a debugging tool for MVS and VM, but it contains a workstation
interface that allows you to edit, compile, and debug from a workstation.

Both debugging facilities provide compatibility support for existing applications with
a few restrictions. For more information, read the product books listed in the
“Bibliography” on page 58.

PL/I for MVS & VM uses the IBM Debug Tool as its debugging facility on MVS and
VM. Debug Tool utilizes the common run-time environment, Language
Environment, to provide ILC debugging capability among C/370, C/C++, COBOL,
and PL/I for MVS & VM, and supports PL/I multitasking. It also provides debugging
capability under CICS. Debug Tool is compatible with INSPECT for C/370 and PL/I
and the OS PL/I interactive test facility, PLITEST. Its features are equivalent to the
features PLITEST supports for OS PL/I. Debug Tool provides compatibility support
for OS PL/I Version 2 applications and the same level of toleration that PLITEST
used to provide for OS PL/I Version 1 applications.

CODE/370 supports editing, compiling, and debugging host (MVS or VM) programs
from a workstation. It uses a language-sensitive editor and debugging tool that
allows you to edit, compile, and debug your programs residing on the host while
you are using your workstation. This gives you the opportunity to download some
of the host development workload.

Using Your Documentation
The publications provided with PL/I for MVS & VM are designed to help you do PL/I
programming under MVS or VM. Each publication helps you perform a different
task.

2 Compiler and Run-Time Migration Guide

Where to Look for More Information
The following tables show you how to use the publications you receive with PL/I for
MVS & VM and Language Environment. You'll want to know information about
both your compiler and run-time environment. For the complete titles and order
numbers of these and other related publications, such as the IBM Debug Tool, see
the “Bibliography” on page 58.

 PL/I Information
Table 2. How to Use Publications You Receive with PL/I for MVS & VM

To... Use...

Understand warranty information Licensed Programming Specifications

Plan for, install, customize, and maintain PL/I Installation and Customization under MVS
Program Directory under VM

Understand compiler and run-time changes and adapt
programs to PL/I and Language Environment

Compiler and Run-Time Migration Guide

Prepare and test your programs and get details on
compiler options

Programming Guide

Get details on PL/I syntax and specifications of
language elements

Language Reference
Reference Summary

Diagnose compiler problems and report them to IBM Diagnosis Guide

Get details on compile-time messages Compile-Time Messages and Codes

Language Environment Information
Table 3. How to Use Publications You Receive with Language Environment for MVS & VM

To... Use...

Evaluate Language Environment Fact Sheet
Concepts Guide

Understand warranty information Licensed Program Specifications

Understand the Language Environment program models
and concepts

Concepts Guide
Programming Guide

Plan for, install, customize, and maintain Language
Environment on MVS

Installation and Customization under MVS
Program Directory under VM

Migrate applications to Language Environment Run-Time Migration Guide
Your language migration guide

Find syntax for run-time options and callable services Programming Reference

Develop your Language Environment-conforming
applications

Programming Guide and your language
programming guide

Find syntax for run-time options and callable services Programming Reference

Develop interlanguage communication (ILC)
applications

Writing Interlanguage Communication
Applications

Debug your Language Environment-conforming
application and get details on run-time messages

Debugging Guide and Run-Time Messages

Diagnose problems with Language Environment Debugging Guide and Run-Time Messages

Find information in the Language Environment library
quickly

Master Index

 Chapter 1. Introduction 3

Chapter 2. Considerations Before Migrating

Before you migrate to Language Environment or PL/I for MVS & VM, you should
read this chapter. It discusses the functional differences between OS PL/I and PL/I
for MVS & VM (and its run-time environment Language Environment). These
differences should be considered before you install Language Environment or PL/I
for MVS & VM. Other chapters in this book discuss differences you must consider
during and after installation.

It is possible to install Language Environment together with the OS PL/I library. If
you'd like to know more about this topic, see Chapter 8, “OS PL/I Coexistence with
Language Environment” on page 50.

This chapter includes the following sections:

� Differences in PLICALLA and PLICALLB support
� Differences in preinitialization support
� Differences in PLISRTx support
� Differences in multitasking support
� Differences in DATE/TIME built-in functions
� Differences in user return codes
� Differences in condition handling
� Differences in run-time messages
� Differences in PLIDUMP
� Differences in debugging tools
� Differences in run-time options
� Differences in storage report
� Differences in interlanguage communication support
� Differences in assembler support
� Considerations for better CPU and storage utilization

Differences in PLICALLA and PLICALLB Support
The interfaces in the following sections are not recommended for use in PL/I for
MVS & VM. They are only supported for compatibility reasons.

 PLICALLA Considerations
Language Environment provides support for OS PL/I applications that use the
PLICALLA entry point. It also provides support for recompiled OS PL/I applications
that want to continue to use PLICALLA as the primary entry point. However, if you
recompile every OS PL/I program in the main load module with PL/I for MVS & VM,
you must do one of the following when you link your main load module:

� For MVS applications, concatenate SIBMCALL before SCEELKED;
for VM applications, global SIBMCALL before SCEELKED.

� Explicitly INCLUDE Language Environment-provided PLISTART CSECT.

If you don't do this, the linkage editor or loader issues an error message for an
unresolved ENTRY PLICALLA statement.

Note that the above rule of using SIBMCALL or explicitly including PLISTART
CSECT does not apply if any of the following conditions exist:

4 Copyright IBM Corp. 1964, 1995

� At least one OS PL/I program in the main load module is not recompiled with
PL/I for MVS & VM. In this case the PLICALLA label entry in the OS PL/I
object module is used to resolve the linkage editor ENTRY PLICALLA control
statement.

� The OS PL/I main load module is statically linked with an assembler program
that invokes PLICALLA. In this case, the V(PLICALLA) in the assembler
program will automatically use the Language Environment-provided PLISTART
CSECT to resolve the linkage editor ENTRY PLICALLA control statement.

You can also use PLICALLA as the primary entry point of a FETCHed/CALLed
main load module compiled with either OS PL/I or PL/I for MVS & VM. However,
the calling routine must pass only user arguments which are passed as to a
subroutine. If run-time options are passed, they are treated as user arguments.

If you have a multitasking application, SIBMTASK must be concatenated in front of
SCEELKED. SIBMCALL and SIBMTASK can appear in any order. For more
details, see “Differences in Multitasking Support” on page 10.

You should not place SIBMCALL in front of SCEELKED or explicitly INCLUDE
Language Environment-provided PLISTART CSECT for a load module not using
PLICALLA because it will increase the size of the module.

If you develop a new application in PL/I for MVS & VM or OS PL/I and you want
the main procedure to receive user arguments like a subroutine, you should do one
of the following:

� Receive control directly from IMS by

– Using CEESTART or PLISTART as the primary entry point of the load
module

– Specifying the SYSTEM(IMS) compile-time option

� Receive control from an assembler program or a procedure using a FETCH or
CALL statement by:

– Using CEESTART or PLISTART as the primary entry point of the load
module

– Specifying the NOEXECOPS option and the SYSTEM(MVS) compile-time
option

– Specifying either BYADDR or BYVALUE option. Refer to the Language
Reference for a description of these options.

Language Environment support of PLICALLA is not available in the following
environments:

 CICS environment
 Preinitialized environment

Nested enclave environment except the PL/I FETCHable main.

 Chapter 2. Considerations Before Migrating 5

 Passing Parameters
OPTIONS(BYADDR) passes the argument indirectly by reference or value and is
the usual argument-passing convention. PL/I for MVS & VM also provides
OPTIONS(BYVALUE) which passes arguments directly by value.

All OS PL/I applications invoking PLICALLA use the BYADDR convention to receive
arguments.

If the main procedure is recompiled with PL/I for MVS & VM using
SYSTEM(CICS|IMS), only POINTER data type can be passed as parameters. If a
main procedure receives control from assembler via PLICALLA and is recompiled
with PL/I for MVS & VM, the main procedure cannot be compiled with
SYSTEM(CICS|IMS).

Table 4 provides the expected argument passing convention (either BYADDR or
BYVALUE) when the main procedure of your OS PL/I PLICALLA application is
recompiled with PL/I for MVS & VM:

Table 4. Parameter Passing for the Main Procedure Compiled with PL/I for MVS & VM

System environment

Invoked from IMS 1

Invoked from
assembler
program 2

Invoked by PL/I
FETCH/CALL
Statement 2

SYSTEM(MVS) BYADDR BYADDR BYADDR

SYSTEM(CMS|CMSTPL) BYADDR BYADDR BYADDR

SYSTEM(CICS) BYVALUE3 Not supported Not supported

SYSTEM(IMS) BYVALUE3 Not supported Not supported

SYSTEM(TSO) BYADDR BYADDR BYADDR

1LANG=PL/I must be specified and it passes indirect by reference.
2It must have already passed indirect by reference or by value.
3PL/I library will convert the argument list to direct by value.

 PLICALLB Considerations
Language Environment provides support for OS PL/I applications that use the
PLICALLB entry point. It also provides support for recompiled OS PL/I PLICALLB
applications that want to continue to use PLICALLB as the primary entry point. The
following table shows the PLICALLB parameter mapping between OS PL/I and
Language Environment:

Table 5 (Page 1 of 2). Differences in Support of PLICALLB Argument List

OS PL/I Language Environment for MVS & VM

Address of argument list (argument must either
point to an address or be zero)

Same support

Address of the length of ISA storage for a
nonmultitasking program or the major task in a
multitasking program

Mapped to STACK(init_size)

Address of ISA storage Used as the initial STACK segment

Address of the length of ISA storage for each
subtask

Mapped to NONIPTSTACK(init_size)

Address of the maximum number of concurrent
subtasks

Mapped to PLITASKCOUNT(max_thread)

6 Compiler and Run-Time Migration Guide

When the above argument list is passed in via the PLICALLB entry point, the
argument in the list must either point to an address or be zero. The high-order bit
ON in an argument indicates the end of the argument list. R1 must contain the
address of the argument list.

With Language Environment, the run-time options passed via the PLICALLB entry
point are processed as options specified on invocation of the application and have
a higher precedence than CEEUOPT or PLIXOPT options. The assembler user
exit cannot be used to alter the run-time options passed through the PLICALLB
invocation. To summarize, the run-time options passed in have the following
precedence (from highest to lowest) among Language Environment option
specification methods:

1. Options defined at installation time that have the non-overrideable attribute

2. Options specified via the PLICALLB entry point

3. Options specified in the PLIXOPT string or in CEEUOPT

4. Option defaults defined at installation time

The user arguments passed to the PL/I main routine have the following precedence
(from highest to lowest):

1. Output from CXIT_PARM or AUE_PARM of the assembler user exit

2. User arguments passed in via the PLICALLB entry

Note: The input to CXIT_PARM or AUE_PARM of the assembler user exit is the
first argument in the PLICALLB parameter list, that is, the address of a vector of
user argument addresses.

Language Environment encourages the use of above-16M-line storage. For
compatibility with OS PL/I, Language Environment maps the user-supplied ISA and

Table 5 (Page 2 of 2). Differences in Support of PLICALLB Argument List

OS PL/I Language Environment for MVS & VM

Address of the options word, in which the
following run-time options can be specified:
REPORT
SPIE|STAE
COUNT
FLOW
HEAP suboptions
TASKHEAP suboptions

Supported as follows:

REPORT mapped to RPTSTG
SPIE|STAE mapped to TRAP
COUNT ignored
FLOW ignored
HEAP(,,KEEP|FREE)|(,,ANY|BELOW)
THREADHEAP(,,KEEP|FREE)|(,,ANY|BELOW)

Address of HEAP storage length for a
nonmultitasking program or the major task in a
multitasking program

Mapped to HEAP(init_size)

Address of HEAP storage Used as the initial HEAP segment

Address of HEAP increment for a nonmultitasking
program or the major task in a multitasking
program

Mapped to HEAP(,incr_size)

Address of HEAP for subtasks Mapped to THREADHEAP(,increment)

Address of ISA increment for a nonmultitasking
program or the major task in a multitasking
program

Mapped to STACK(,incr_size)

Address of ISA increment for each subtask
(optional for a nontasking application)

Mapped to NONIPTSTACK(,incr_size)

 Chapter 2. Considerations Before Migrating 7

HEAP storage to STACK and HEAP. With this mapping, however, you must be
aware that Language Environment still needs to issue some GETMAINs. Since
user-supplied ISA/HEAP storage is usually below the 16M line. below-16M-line
storage can be quickly consumed under Language Environment. How Language
Environment manages storage can be found in the Language Environment for MVS
& VM Programming Guide.

Language Environment manages storage differently than OS PL/I. It divides
storage into more categories than the two OS PL/I supported, ISA and HEAP. As a
result, mapping the user-supplied OS PL/I ISA or HEAP storage to Language
Environment STACK or HEAP storage still requires GETMAINs during run time.
Further, Language Environment provides diagnostics to ensure the user-supplied
length of ISA or HEAP storage is a multiple of 8 bytes and the address is on a
double-word boundary.

Language Environment also ensures the location of the user-supplied ISA or HEAP
storage matches to the location specification in the STACK or HEAP run-time
option. When the user-supplied HEAP storage is ignored because of the following
reasons:

1. User-supplied heap storage is above the 16M line, and
2. The ANYWHERE suboption of the HEAP option is in effect, and
3. The main program is in AMODE(24).

Language Environment allocates below the 16M line storage using the init_sz24
and incr_sz24 suboptions specified in the HEAP option.

If you recompile every program in the main load module with PL/I for MVS & VM
and you want to continue to use PLICALLB as the primary entry point, you must do
one of the following when you link your main load module:

� For MVS applications, concatenate SIBMCALL before SCEELKED;
for VM applications, global SIBMCALL before SCEELKED.

� Explicitly INCLUDE Language Environment-provided PLISTART CSECT.

Note that the above rule of using SIBMCALL or explicitly including PLISTART
CSECT does not apply if any of the following conditions exist:

� At least one OS PL/I program in the main load module is not recompiled with
PL/I for MVS & VM. In this case the PLICALLB label entry in the OS PL/I
object module is used to resolve the linkage editor ENTRY PLICALLB control
statement.

� OS PL/I main load module is statically linked with an assembler program that
invokes PLICALLB. In this case, the V(PLICALLB) in the assembler program
will automatically use the Language Environment-provided PLISTART CSECT
to resolve the linkage editor ENTRY PLICALLB control statement.

You should not place SIBMCALL in front of SCEELKED or explicitly INCLUDE
Language Environment-provided PLISTART CSECT for a load module not using
PLICALLB because it will increase the size of the module.

When you develop new applications in PL/I for MVS & VM and want to pass both
run-time options and arguments to a PL/I main procedure, especially to provide
user-supplied stack and heap storage from an assembler program, take advantage

8 Compiler and Run-Time Migration Guide

of Language Environment's preinitialization support as described in Language
Environment for MVS & VM Programming Guide.

Language Environment support of PLICALLB is not available in the following
environments:

 CICS
 IMS
 Preinitialized environment

Nested enclave environment

 Passing Parameters
OPTIONS(BYADDR) passes the argument indirectly by reference or value and is
the usual argument-passing convention. PL/I for MVS & VM also provides
OPTIONS(BYVALUE) which passes arguments directly by value.

You must use the BYADDR option when you want to pass parameters using
PLICALLB. PLICALLB is invoked from assembler which passes the argument list
indirectly by reference or value.

Table 6 provides the expected argument passing convention (either BYADDR or
BYVALUE) when the main procedure of your OS PL/I PLICALLB application is
recompiled with PL/I for MVS & VM:

Table 6. Parameter Passing for the Main Procedure Compiled with PL/I for MVS & VM

System environment Invoked from assembler program 1

SYSTEM(MVS) BYADDR

SYSTEM(CMS|CMSTPL) BYADDR

SYSTEM(CICS) Not supported

SYSTEM(IMS) Not supported

SYSTEM(TSO) BYADDR

1It passed the argument list required by the PLICALLB entry.

Differences in Preinitialization Support
The PL/I preinitialized program interface is supported with the following changes:

� The PL/I preinitialized program interface no longer supports the REINITIALIZE
request modifier code. If you attempt to use this function, it is diagnosed with
the 4093-136 abend code.

� If the routine specified in the CALL request is not statically linked with the
assembler driver and it contains ILC, you must ensure the environment for ILC
is initialized by including the same ILC in the routine specified in the INIT
request.

� The TERM request no longer returns 1000 return code as OS PL/I run time did.

� Some of the return and reason codes for the service vector defined by OS PL/I
are changed. You must use the return and reason codes for the service vector
defined by Language Environment preinitialization services as described in
Language Environment for MVS & VM Programming Reference.

 Chapter 2. Considerations Before Migrating 9

� If you are using VM, the LOAD and DELETE services must have the additional
searching capability to include the saved segment and relocatable load
modules.

Language Environment preinitialization services support multiple preinitialization
environments under the same TCB. Multiple preinitialization environments under
the same TCB is not supported by OS PL/I. To understand how the service works,
see “Using Preinitialization Services” in Language Environment for MVS & VM
Programming Guide.

Differences in PLISRTx Support
OS PL/I applications containing PLISRTx invocations are supported by Language
Environment. However, it is a good idea to relink your load module with Language
Environment for the following reasons:

� To allow the library routine to access the Language Environment-provided
DFSORT interface for a more integrated language and sort environment.

� To allow the library routine to replace the 24-bit DFSORT parameter list with
the extended 31-bit DFSORT parameter list.

You can relink your OS PL/I PLISRTx applications using one of the following ways:

� Object module relinking tool on OS PL/I Version 2 Release 3

See “OS PL/I Object Module Relinking Tool - APARs PN69803” on page 56 for
details.

� Library routine replacement tool on Language Environment

See “OS PL/I Library Routine Replacement Tool” on page 53 for details.

� Relink the object module directly with Language Environment.

Differences in Multitasking Support
The syntax and semantics of PL/I multitasking facility is supported by PL/I for MVS
& VM and Language Environment for MVS & VM the same way as it was by OS
PL/I. However, Language Environment uses different underlying system services to
support PL/I multitasking.

For PL/I functions which are common to nontasking and multitasking, their
migration considerations described in this book apply to both nontasking and
multitasking applications. Thus, if your multitasking application uses a specific
common function, such as PLICALLA, and you want to know if there is any
migration considerations, you should find and read the discussion for that function
in this book.

Language Environment has the following unique requirements and differences from
OS PL/I for PL/I multitasking applications. You must follow the requirements and
observe the differences when you run your multitasking applications.

� MVS/ESA SP Version 5 with OpenEdition (OE) MVS Services is required;
otherwise you will receive message IBM058I and 4093-52 abend.

� Language Environment explicitly diagnoses the environments that do not
support PL/I multitasking with the message IBM0577I and 4093-12 abend.

10 Compiler and Run-Time Migration Guide

Those environments include CICS, DB2, IMS, VM, preinitialized environment,
and nested enclaves.

� Language Environment uses different system services to support PL/I
multitasking. As a result, each task might experience a timing difference on
task initialization and termination. Instead of relying on system services and
default tasking hierarchy, you should use the EVENT option or variable and the
WAIT statement to control the desired sequence among tasks.

� When you link your PL/I for MVS & VM or relink your OS PL/I multitasking
application with Language Environment, you must concatenate the Language
Environment library SIBMTASK before SCEELKED for the main load module.
Such concatenation is not required for a fetched load module.

� When the SIBMCALL dataset is used to support OS PL/I PLICALLA or
PLICALLB entry point, the concatenation sequence between SIBMCALL and
SIBMTASK can be in any order.

� When the SIBMMATH dataset is used for the OS PL/I math library, the
concatenation sequence between SIBMMATH and SIBMTASK can be in any
order.

� OS PL/I Version 1 Release 5.1 multitasking load module is supported.

� The OS PL/I multitasking run-time options are mapped to the equivalent
Language Environment options as shown in the following table:

� Some of Language Environment run-time options have specific meanings for
PL/I multitasking applications. For example, POSIX(OFF) IBM-supplied default
must be used with PL/I multitasking application; otherwise the message
IBM0581I and abend 4093-52 are issued. See Language Environment for MVS
& VM Programming Reference for details.

� When you use the PRIORITY option on the CALL statement to create a
subtask with a different priority, that priority does not take effect until the
subtask is dispatched a second time by the system. When the subtask is
created, it always inherits the priority of the creating task the first time it is
dispatched by the system. Only when the subtask is dispatched by the system
a second time does the different priority take effect. However, if you use the
PRIORITY built-in function or pseudovariable to reflect a different priority in the
subtask, the different priority of the subtask takes effect immediately.

Table 7. OS PL/I and Language Environment Run-Time Options Comparison

OS PL/I

Language
Environment

Notes

ISASIZE(init_size,
sub_task_init_size,
max_tasks)

STACK(init_size)
NONIPTSTACK
(sub_task_init_size)
PLITASKCOUNT
(max_tasks)

This OS PL/I option is mapped to three
Language Environment options. The
abbreviation ISA is supported by Language
Environment

ISAINC(incr_size,
sub_task_incr_size)

STACK(,incr_size)
NONIPTSTACK
(,sub_task_incr_size)

This OS PL/I option is mapped to two
Language Environment options.

TASKHEAD
(sub_task_init_size,
sub_task_incr_size,
loc, state)

THREADHEAP
(sub_task_init_size,
sub_task_incr_size,
loc, state)

These options map directly. The abbreviation
TH will also be recognized for TASKHEAP.

 Chapter 2. Considerations Before Migrating 11

� When SYSPRINT is shared by multiple tasks, Language Environment no longer
uses MVS ENQ and DEQ to serialize the stream PUT operations but MVS
ENQ and DEQ remain in use for an EXCLUSIVE file.

If you want the PL/I standard SYSPRINT file to contain run-time message
output as well as the usual PL/I STREAM output, you should specify the
MSGFILE(SYSPRINT) run-time option. In addition, the SYSPRINT file must be
opened in the major task before any subtasks are created; otherwise,
Language Environment raises the UNDEFINEDFILE condition along with
message IBM0580S. OS PL/I does not diagnose this rule.

When MSGFILE(SYSPRINT) is in effect, the user output lines for an individual
stream PUT statement may be interwoven with run-time message output from
other tasks. This differs from the output for the OS PL/I diagnostic SYSPRINT
file under OS PL/I multitasking environment.

� If a file is closed in a task, results are unpredictable if an attempt is made to
utilize the file in any other task which had previously shared the file.

� DFSORT/MVS Release 13 provides the cultural sort support via the LOCALE
parameter. The DFSORT cultural sorting is not supported for a multitasking
application.

If your application is OS PL/I, you must make sure DFSORT/MVS Release 13
is installed with LOCALE=NONE.

If your application is PL/I for MVS & VM and is relinked with Language
Environment, or is relinked with the OS PL/I Object Module Relinking tool on
OS PL/I Version 2 Release 3 (APAR PN69803 and PN69804), you don't need
to be concerned with the LOCALE parameter. Language Environment will
enforce LOCALE=NONE for your application.

� Language Environment provides equivalent multitasking information in
PLIDUMP as in OS PL/I.

� Language Environment provides equivalent multitasking information in the
storage report as in OS PL/I.

� Language Environment uses thread in some run-time outputs such as run-time
messages and storage report when referring to a PL/I task.

� OS PL/I Version 2 Release 3 Programming Guide, page 88, lists certain library
modules that must be INCLUDEd in the main task while the fetched subtask
uses certain tasking functions. Such INCLUDE is no longer required when you
relink your OS PL/I application with Language Environment.

� Interlanguage Communication with COBOL

Interlanguage communication (ILC) with COBOL remains supported. Language
Environment provides a better enforcement of the rule that, if a COBOL
program has been invoked in a task, no COBOL program can be invoked in
other tasks until the task that has invoked COBOL terminates.

� Assembler programs remain supported. However, you must not use the MVS
ATTACH and DETACH macros in an assembler program. There are other
restrictions on using MVS macros, for example WAIT and POST. See
Language Environment for MVS & VM Programming Guide for information on
these restrictions.

12 Compiler and Run-Time Migration Guide

Differences in DATE/TIME Built-In Functions
The DATETIME and TIME built-in functions now return the number of milliseconds
in all environments. The syntax and description of these built-in functions are in
PL/I for MVS & VM Language Reference.

Differences in User Return Code
PL/I for MVS & VM and Language Environment support a FIXED BIN(31) four-byte
user return code value for PLIRETC, PLIRETV, and OPTIONS(RETCODE). This
support removes the restriction of maximum value 999. OS PL/I applications must
be relinked with Language Environment or recompiled with PL/I for MVS & VM in
order to take advantage of the four-byte user return-code value.

The following table shows how PL/I user return code is supported:

For PLIRETC, the PL/I for MVS & VM and relinked OS PL/I load modules can set a
4-byte user return code value.

For PLIRETV and RETCODE, only the PL/I for MVS & VM load module can receive
a 4-byte user return code value.

In order to fully exploit the 4-byte user return code value, you must compile your
application with PL/I for MVS & VM.

Under Language Environment, upon return from the PLISRTx invocation, the PL/I
user return code is always reset to zero. This is not the case previously with OS
PL/I run-time.

Table 8. Return Code Behavior under Language Environment for MVS & VM

Function

OS PL/I
load module

OS PL/I object module
linked with Language
Environment

PL/I for MVS & VM
load module

PLIRETC
built-in
function

2-byte value with
restriction of 999

4-byte value without
restriction of 999

4-byte value without
restriction of 999

PLIRETV
built-in
function

2-byte value Lower 2 bytes of a
4-byte value

4-byte value

RETCODE
option

Lower 2 bytes of R15 Lower 2 bytes of R15 2-byte value

Differences in Condition Handling
PL/I condition handling semantics remain supported under Language Environment.
However, the timing of issuing the run-time message for an ERROR condition with
respect to the ERROR ON-Unit is slightly different in the following way:

� The run-time message for an ERROR condition is issued only if there is no
ERROR ON-Unit established, or if the ERROR ON-Unit does not recover from
the condition by using a GOTO out of block. Therefore, you can use a GOTO
out of the ERROR ON-Unit to avoid a message for a PL/I ERROR condition.

 Chapter 2. Considerations Before Migrating 13

Notice for PL/I conditions whose implicit action including issuing a message and
raising the ERROR condition, the timing of issuing the message is unchanged.

Table 9 shows when the run-time message for an ERROR condition is issued
under OS PL/I with respect to the ERROR On-Unit.

Table 10 shows when the run-time message for an ERROR condition is issued
under Language Environment with respect to the ERROR On-Unit.

The SNAP traceback message produced by ON ERROR SNAP continues to be
issued before the ERROR ON-unit receives control. Notice the SNAP traceback
message is not identical to the regular ERROR message.

Severities of some PL/I conditions are different under Language Environment. See
PL/I for MVS & VM Language Reference for those severities.

If your OS PL/I application used to force an abend for an unhandled condition
under OS PL/I run-time using OS PL/I assembler user exit IBMBXITA or abend exit
IBMBEER, you now should use the following ways to force an abend under
Language Environment:

� Run your application with Language Environment ABTERMENC(ABEND)
option. You cannot specify your own abend code via the run-time option.

� Use Language Environment assembler user exit CEEBXITA to force an abend
with your own abend code.

There is limited support for OS PL/I IBMBXITA and IBMBEER under Language
Environment. See “Considerations for Using Assembler User Exits” on page 26 for
details.

Table 9. OS PL/I Version 2 Release 3 ERROR ON-Unit and Message for an ERROR
condition

Condition

No ON-Units

ERROR ON-Unit No
GOTO

ERROR ON-Unit GOTO

ERROR condition raised1 Message Message prior to
ON-unit

Message prior to ON-unit

ZERODIVIDE condition
raised2

Message Message prior to
ON-unit

Message prior to ON-unit

1 Taking the square root of a negative number, data exception, etc.

2 With no ZERODIVIDE ON-unit; thus, implicit action is taken. Message is printed, ERROR condition
is raised.

Table 10. Language Environment ERROR ON-Unit and Message for an ERROR Condition

Condition

No ON-units

ERROR ON-unit No
GOTO

ERROR ON-unit GOTO

ERROR condition raised1 Message Message after ON-unit No message

ZERODIVIDE condition
raised2

Message Message prior to
ON-unit

Message prior to ON-unit

1 Taking the square root of a negative number, data exception, etc.

2 With no ZERODIVIDE ON-unit; thus, implicit action is taken. Message is printed, ERROR condition
is raised.

14 Compiler and Run-Time Migration Guide

An UNHANDLED condition of severity 2 or higher now produces an abend U4039
and optionally a system dump if SYSUDUMP or SYSABEND ddname is present. If
ABTERMENC(RETCODE) is in effect, your application continues the termination
with an abend code. If you don't want to see the U4039 abend, Language
Environment provides you the facilities to suppress it.

See “Abnormal Termination Exit” in Language Environment for MVS & VM
Installation and Customization under MVS for ways to suppress or change the
U4029 abend.

Differences in Run-Time Messages
The format and content of run-time messages are different. If you have
applications that analyze run-time messages, you must change the applications to
allow for the differences. The differences include:

� The message number in the message prefix is four digits instead of three digits
in the form IBMnnnnx, where nnnn represents the message number and x
represents the severity of the message.

� The message severity in the message prefix can be I, W, E, S, or C.

� The message text of some mixed-case English and Japanese messages has
been enhanced. However, the message text of uppercase English messages
has not changed.

Details are provided in Language Environment for MVS & VM Debugging Guide
and Run-Time Messages.

Under Language Environment, run-time messages go to the MSGFILE destination
specified in the run-time option MSGFILE. The default for MSGFILE destination is
SYSOUT. The user output still goes to SYSPRINT. If you want your run-time
messages to go to SYSPRINT, specify the MSGFILE(SYSPRINT) run-time option.
In this case, SYSPRINT contains user output and run-time messages. Details are
provided in the Language Environment for MVS & VM Programming Guide.

Under Language Environment, run-time messages give offset values that are
relative to the start of the external procedure, rather than relative to the start of the
block that contains the statement. You can use these offsets to help you find the
statement that is in error. To do this, match the offset provided in the message
with the offset given in the pseudo-assembler listing that the compiler produces
when you specify the LIST compile-time option.

Differences in PLIDUMP
PLIDUMP now produces a Language Environment-style dump. The way you use
PLIDUMP and the dump output is different. The following list the differences in the
way you use PLIDUMP and the output produced. Compile unit refers to the
primary entry point of the external procedure and Compile unit name refers to the
name of the external procedure.

� The ddname of the dump output file can be CEEDUMP, PLIDUMP, or
PL1DUMP. If you do not define one of these files, Language Environment for
MVS & VM creates a default CEEDUMP file to contain the dump output. The
LRECL of the dump output file must be at least 133 bytes to prevent dump
records from wrapping, not the 121 bytes required by OS PL/I.

 Chapter 2. Considerations Before Migrating 15

� When you use the hexadecimal (H) option of PLIDUMP, you must specify the
ddname CEESNAP for MVS, or the file name CEESNAP for VM; otherwise the
H option is ignored. This data set contains the SNAP dump output.

When you specify the hexadecimal (H) option under MVS, the output from
SNAP includes all system control program information (SDATA=ALL). OS PL/I
provides only partial information (SDATA=CB, Q, and TRT).

� When you use ILC, the dump output contains information related to other
languages (for example, C/C++ or COBOL).

� The identifier character string is limited to 60 bytes rather than the 90 bytes OS
PL/I supported.

� The traceback section lists the compile-unit name associated with each entry
point name. When the entry point is a secondary entry point, the primary entry
point name associated with the actual entry point is not listed.

The traceback section also contains offsets relative to the address of the
compile unit, as well as offsets relative to the address of the real entry point.

� Run-time messages are in a separate section; they are no longer part of the
traceback section.

� When you specify the Block (B) option of PLIDUMP, the condition handler save
areas appear in the Block section of the dump. If you do not specify the Block
option of PLIDUMP, the condition handler save areas do not appear in the
dump.

� If the program was compiled with the TEST compile-time option, and a
begin-block has a label, the begin-block is identified as Label:BEGIN block..
Otherwise, the begin-block is identified as %BLOCKnn, where nn is the block
count for the begin-block.

� Compiler-generated ILC subroutines now appear in the traceback section.
They are identified as the compile unit name concatenated with the suffix ILC.

� PL/I library routines that have Language Environment-defined Program
Prologue Areas (PPAs) are identified by name in the dump. If the library
routines do not have Language Environment PPAs, they are identified as
Library(PL/I).

� Assembler routines that conform to the rules for mimicking PL/I routines are
identified by their CSECT names in the dump output.

� PLIDUMP now conforms to National Language Support standards.

� PLIDUMP can supply information across multiple Language Environment
enclaves. For example, if an application running in one enclave FETCHes a
main procedure (an action that creates another enclave), PLIDUMP contains
information about both procedures.

Differences between Debugging Tools
IBM Debug Tool is the interactive debugger that supports PL/I and Language
Environment. Debug Tool functions are equivalent to PLITEST functions.
However, some names of PLITEST commands have changed in Debug Tool and
are no longer accepted. These are listed in Table 11.

16 Compiler and Run-Time Migration Guide

You must have Language Environment for MVS & VM Release 4 installed on your
system before you can use Debug Tool with your PL/I for MVS & VM or OS PL/I
applications.

Table 11. PLITEST Commands and Their Debug Tool Equivalents

PLITEST Command Equivalent Debug Tool Command

CLEAR ON CLEAR AT OCCURENCE

LIST %FPRS LIST SHORT FLOATING

LIST %LPRS LIST LONG FLOATING

LIST %GPRS LIST REGISTERS

LIST SNAP LIST CALLS

MOVECURS CURSER

ON AT OCCURENCE

QUERY AT LIST AT

QUERY ATTRIBUTES DESCRIBE ATTRIBUTES

QUERY BEARINGS QUERY LOCATION

QUERY ENVIRONMENT DESCRIBE ENVIRONMENT

QUERY MONITOR LIST MONITOR

QUERY NAMES 'pattern' LIST NAMES 'pattern'

QUERY NAMES PROCEDURE LIST PROCEDURE

QUERY PROGRAM DESCRIBE PROGRAM

QUERY STATEMENT NUMBERS LIST STATEMENT NUMBERS

SEARCH FIND

SET GRAPHIC SET DBCS

SET LANGUAGE SET NATIONAL LANGUAGE

SET LAST n SET HISTORY n

SET FILE SET LOG

SIGNAL (ON cond) PROGRAM TRIGGER (ON cond)

SIGNAL (ON cond) TEST TRIGGER AT OCCURENCE (ON cond)

SIGNAL (AT cond) TEST TRIGGER AT (AT cond)

VTRACE STEP

WINDOWS LAYOUT

Differences in Run-Time Options
Language Environment run-time options replace PL/I run-time options. Most PL/I
run-time options have an equivalent Language Environment run-time option that
provides the same function. This section describes differences in the use of
run-time options.

You should adapt your applications to allow for the following differences:

� When you pass run-time options in the MVS GO step, your run-time options
string must end with a slash (/) to distinguish it from a main procedure
parameter string. If you omit the slash, the string is passed as the main
procedure parameter.

� The Language Environment ABTERMENC option controls which type of
return/abend code your application receives at abnormal termination.

 Chapter 2. Considerations Before Migrating 17

ABTERMINC(RETCODE) allows your application to receive run-time return
code, which is equivalent to the way OS PL/I worked.

� The OS PL/I COUNT option is ignored.

� The Language Environment ERRCOUNT option limits the number of errors that
are handled at run time. ERRCOUNT(0) specifies that there is no limit, which
is equivalent to the way the OS PL/I worked.

� The Language Environment DEPTHCONDLMT option limits the extent to which
conditions can be nested. To maintain compatibility, specify
DEPTHCONDLMT(0), which means there is an unlimited depth.

� The OS PL/I FLOW option is ignored.

� The OS PL/I HEAP option is always in effect. This means that when you
allocate storage for BASED and CONTROLLED variables, the storage always
comes from HEAP storage. The storage does not come from a PL/I Initial
Storage Area (ISA). HEAP(0) is ignored and not supported.

� The Language Environment NATLANG option replaces the OS PL/I
LANGUAGE option.

� The Language Environment RPTSTG option replaces the OS PL/I REPORT
option and the option report.

� The Language Environment TRAP option replaces both OS PL/I SPIE and
STAE options. The following table shows how the OS PL/I SPIE and STAE
options map to Language Environment's TRAP option:

� The Language Environment STACK option replaces both OS PL/I ISASIZE and
ISAINC options. STACK(,,ANY) can be used for the following:

– PL/I for MVS & VM application

– OS PL/I application relinked with Language Environment and does not
contain any edited stream I/O

Note that your application must run in AMODE(31) to use STACK(,,ANY).

Under CICS, ALL31(ON) and STACK(,,ANY) are the defaults. However,
because STACK(,,BELOW) is required for OS PL/I applications, unless it is
relinked, you must change the default to STACK(,,BELOW) during installation
or explicitly specify STACK(,,BELOW) for OS PL/I applications.

Table 12. Mapping of SPIE and STAE Options to the TRAP Option

OS PL/I

Language
Environment

Action

SPIE|NOSPIE TRAP(ON|OFF) If SPIE|NOSPIE is specified in input, TRAP is set
according to the option: TRAP(ON) for SPIE, and
TRAP(OFF) for NOSPIE.

STAE|NOSTAE TRAP(ON|OFF) If STAE|NOSTAE is specified in input, then TRAP is
set according to the option: TRAP(ON) for STAE, and
TRAP(OFF) for NOSTAE.

SPIE STAE or
SPIE NOSTAE or
STAE NOSPIE

NOSPIE NOSTAE

TRAP(ON)

TRAP(OFF)

If both SPIE|NOSPIE and STAE|NOSTAE are
specified together in input, TRAP is set according to
both options: TRAP(OFF) when both options are
negative, and TRAP(ON) otherwise. TRAP(ON) must
be in effect for applications to run successfully.

18 Compiler and Run-Time Migration Guide

� The Language Environment XUFLOW option determines whether the
UNDERFLOW condition is raised when underflow occurs. XUFLOW(AUTO)
preserves PL/I semantics with regard to raising the UNDERFLOW condition.

The following run-time options are needed to provide compatibility with OS PL/I:

 � ABTERMENC(RETCODE)
 � ERRCOUNT(0)
 � DEPTHCONDLMT(0)
 � TRAP(ON)
� XUFLOW(AUTO | ON)

For more information about run-time options, see the Language Environment for
MVS & VM Programming Reference.

For OS PL/I applications, the options specified in the PLIXOPT string is processed
as the application-specific options. If you provide the Language Environment
CEEUOPT, CEEUOPT is ignored.

Note that if the main load module contains ILC, the PLIXOPT string is ignored. In
this case, you must provide CEEUOPT for the application-specific options.

Differences in Storage Report
The format, contents, and destination of the run-time storage report have changed.
Language Environment provides storage information equivalent to OS PL/I. The
details of storage report is described in Language Environment for MVS & VM
Programming Reference.

The PLIXHD declaration is no longer used to provide the heading for the run-time
storage report. Instead, use Language Environment's Callable Service, CEE3RPH,
to specify the heading. If you do not use CEE3RPH, the heading includes the main
procedure name, date, and time of execution.

Differences in Interlanguage Communication Support
There are some restrictions on support for ILC applications containing OS PL/I and
other pre-Language Environment language programs. The restrictions fall into
three groups:

� Fully supported load modules

Load modules containing OS PL/I and pre-Language Environment C/370
programs are supported under Language Environment.

� Load modules you must relink

Load modules containing OS PL/I and VS COBOL II Release 3 (or later)
programs must be relinked with Language Environment.

OS PL/I Version 2 Release 3 provides a migration aid, APARs PN69803 and
PN69804, to allow you to do relinking while you are under OS PL/I Version 2
Release 3 environment. As long as the application is relinked with PN69803
and PN69804 under OS PL/I Version 2 Release 3, the application is supported
under Language Environment. See “OS PL/I Object Module Relinking Tool -
APARs PN69803” on page 56 for details of the migration aid.

 Chapter 2. Considerations Before Migrating 19

 � Unsupported ILC

ILC between OS PL/I and the following languages is not supported:

 – Fortran
 – OS/VS COBOL

– VS COBOL II Version 1 Release 2 or earlier releases

For more information, see Language Environment for MVS & VM Writing
Interlanguage Communication Applications.

PL/I for MVS & VM ILC with COBOL is now reentrant. To write reentrant ILC
applications, you must specify OPTIONS(REENTRANT) for all of your external
procedures and ensure that you do not modify static variables. You must recompile
all procedures that communicate with COBOL, using PL/I for MVS & VM.

The behavior of certain applications that use ILC might be different. For example:

� Condition handling might behave differently. The major causes of differences
in condition handling are that the INTER option is now ignored, and that PL/I
condition handling facilities can deal with conditions occurring in non-PL/I
routines whether you specify INTER or not.

� Under OS PL/I, in applications that used ILC, the environment initialization and
termination of the involved languages, including PL/I, could occur multiple
times. With Language Environment for MVS & VM, there is only one run-time
environment, and language-specific initialization and termination occurs only
once. Changes in behavior that you might see include opening and closing of
files, releasing of allocated storage, and invocation of establish ON-units.

For a complete description of how ILC works in the Language Environment for MVS
& VM run-time environment, see the Writing Interlanguage Communication
Applications.

Differences in Assembler Support
With PL/I for MVS & VM, the object module contains the CSECT name
CEESTART. It also contains CEEMAIN if it has OPTIONS(MAIN) or CEEFMAIN if
it has OPTIONS(FETCH). PL/I for MVS & VM no longer produces PLISTART and
PLIMAIN CSECTs. CEESTART, CEEMAIN, and CEEFMAIN are not supported as
a standard entry point and you cannot call them directly from an assembler
program. You can call CEESTART from an assembler program only when it is a
CSECT name of a PL/I for MVS & VM routine statically linked with an assembler
program. Therefore, any assembler program mimicking a OS PL/I main procedure
(calling PLISTART directly as a standard entry point), must continue to use
PLISTART under Language Environment.

With Language Environment, assembler programs that call a PL/I routine must
follow the calling conventions defined by Language Environment for MVS & VM.
For example, register 13 pointing to a save area, save areas properly
back-chained, and the first word of the save area being zero. For detailed
information, see the Language Environment for MVS & VM Programming Guide.

If your OS PL/I main program is called by an assembler program and you want to
convert your assembler program to use Language Environment-conforming
assembler, you must either recompile your OS PL/I program without

20 Compiler and Run-Time Migration Guide

OPTIONS(MAIN) or ensure the entry point receiving control is the real entry point
of the PL/I program. In either case, the called PL/I program is treated as a
subroutine. Either of these programs run under the same Language Environment
enclave where the assembler program is the main program and the called PL/I
program is a subroutine.

Your Language Environment-conforming assembler main program must explicitly
include the Language Environment-PL/I for MVS & VM signature CSECT,
CEESG010, when calling an OS PL/I subroutine to ensure the Language
Environment-PL/I-specific run-time environment. There are three ways Language
Environment-conforming assembler can pass control to an OS PL/I subroutine:

1. Branch to a statically linked PL/I subroutine.

2. Use the Language Environment macro CEELOAD and branch to a separately
linked PL/I subroutine.

3. Use assembler instructions such as LOAD and BALR to a separately linked
PL/I subroutine.

If you recompile OS PL/I subroutines that use method 1 or 2 with PL/I for MVS &
VM, you don't need to include CEESG010 with your assembler program. If your
assembler program uses instructions as described in method 3, you must always
include CEESG010 with your assembler program, even if you recompile your PL/I
subroutine with PL/I for MVS & VM.

The condition-handling behavior of the LINK from assembler is now clearly defined.
For detailed information, see Language Environment for MVS & VM Programming
Guide.

Considerations for Better CPU and Storage Utilization
After you migrate to Language Environment, you should retune your applications to
maximize the performance. When you retune an application, it is not always
possible to maximize CPU and storage at the same time. Often you will find that,
in order to obtain better CPU, you need to use more storage, or vice versa. This
section provides general tips to help you to retune your applications under
Language Environment.

For more information on tools you can use to improve performance for your
applications, see Language Environment for MVS & VM Programming Guide,
Language Environment for MVS & VM Installation and Customization under MVS,
and PL/I for MVS & VM Programming Guide.

Improving CPU Utilization
The following discussion shows ways to help you obtain better CPU utilization:

� Reduce the number of GETMAINs and FREEMAINs issued by Language
Environment

Use the Language Environment RPTSTG(ON) option to produce the storage
report. Specify the reported storage amount in the corresponding Language
Environment storage run-time options.

� Reduce the number of LOADs and DELETEs issued by Language Environment

 Chapter 2. Considerations Before Migrating 21

Put the commonly used Language Environment library routines in (E)LPA. The
following lists the recommended candidates for PL/I:

 – CEEBINIT (LPA)
 – CEEPLPKA (ELPA)
 – CEEEV010 (ELPA)

– CEEBLIIA (LPA) for OS PL/I applications not relinked
– CEEOLVD (ELPA) for PL/I multitasking applications

 – IBMRLIB1 (LPA)

See Language Environment for MVS & VM Installation and Customization
under MVS for a complete list of library routines that can be put in (E)LPA.

� Avoid AMODE switching between library routines

Use AMODE(31) for your application, if possible, so you can specify Language
Environment ALL31(ON) option. If ALL31(ON) is in effect, there is no AMODE
switching among library routines.

� Avoid certain PL/I conditions

Avoid the following PL/I conditions because they might cause a slower
performance to your application:

 – ENDPAGE
 – STRINGSIZE
 – AREA
 – OVERFLOW
 – ENDFILE

� Use DF/SMS-provided system-determined BLKSIZE

On MVS, use BLKSIZE(0) for an output file that can be blocked. DF/SMS
determines the optimal block size for you which can improve the file
performance.

� Use Language Environment-provided math routines

Some of the Language Environment math routines have better CPU
performance than OS PL/I math routines. For most commonly used routines,
Language Environment produces more accurate results than OS PL/I.

� Use Language Environment Library Routine Retention facility (LRR)

You can get a better CPU performance if you use LRR. When LRR is used,
Language Environment keeps certain Language Environment resources in
storage when an application ends. Subsequent invocations of programs that
use LRR is much faster because the Language Environment resources left in
storage are reused.

For example, you can use LRR for your IMS/DC environment to improve
performance.

Note that because LRR leaves LE resources in the storage for a long period of
time, you must assess your storage availability to accommodate the situation.

22 Compiler and Run-Time Migration Guide

Improving Storage Utilization
The following discussion helps you to obtain better storage utilization:

� Recompile with PL/I for MVS & VM or relink with Language Environment

The PL/I for MVS & VM load module or the relinked OS PL/I load module has a
smaller size because it contains the Language Environment stubs only.

� Make your application AMODE(31) and RMODE(ANY)

Most likely the application will be loaded above the 16M line. You can specify
the Language Environment ALL31(ON) option which allows Language
Environment to allocate some of its control blocks above the 16M line.

� Use Language Environment option HEAP(,,ANY) option, if possible

For PL/I, Language Environment will allocate the heap storage above the 16M
line if the following is true:

– The requestor is in AMODE(31)
– HEAP(,,ANY) is in effect
– The main program is in AMODE(31)

� Use Language Environment STACK(,,ANY) option, if possible

Your application must be in AMODE(31). For PL/I, Language Environment will
allocate the stack storage above the 16M line if one of the following is true:

– Your application is recompiled with PL/I for MVS & VM

– Your application is relinked with Language Environment and contains no
edited stream I/O

� Reduce the IBM-supplied default values in Language Environment storage
options

If you use a smaller value, Language Environment will allocate less storage
each time, but it could result in more GETMAINs and FREEMAINs being
issued.

� Put commonly used Language Environment library modules in (E)LPA

The library routines in (E)LPA do not occupy storage in your application region,
so your application has more storage to use. See the recommended library
routines for (E)LPA in “Improving CPU Utilization” on page 21.

Improving Performance under Subsystems
The following discussion helps you to obtain better performance under specific
subsystems:

 � Under CICS

Use the PL/I FETCH/CALL statement instead of EXEC CICS LINK. The PL/I
FETCH/CALL statement has a much shorter path length than the path length of
EXEC CICS LINK.

 � Under IMS

Use Language Environment Library Routine Retention (LRR) facility to reduce
the number of LOADs/DELETEs and GETMAINs/FREEMAINs issued by
Language Environment for each transaction.

Preload commonly used Language Environment library modules and frequently
used top-level applications.

 Chapter 2. Considerations Before Migrating 23

 Chapter 3. Installation Considerations

This chapter contains product information you need to know at installation time. It
also discusses differences in user exits, effects of Language Environment Abnormal
Termination Exit, and migration of the OS PL/I Shared Library.

The Language Environment run-time options that you might want to consider at
installation time are described in “Differences in Run-Time Options” on page 17.

This chapter includes the following sections:

 � Product information
� Considerations for using assembler user exits
� Considerations for using high level language user exits
� Considerations for using Language Environment abnormal termination exit
� Considerations for relinking the Shared Library

 Product Information
PL/I for MVS & VM has renamed its parts so that, if you want to, you can install it
in the same SMP/E zone as OS PL/I. To help you identify the elements of each
product, the following table lists the name differences:

Language Environment must be available before you can compile, link-edit, and run
a PL/I for MVS & VM application. If you attempt to compile a program before
installing Language Environment, the program will not compile and a message will
be generated. A STEPLIB concatenation for SCEERUN must be added in the
compile. The details of the datasets and modules shipped with PL/I and Language
Environment can be found in one of the documents listed below. If you want to
know the datasets and modules names, storage requirements, or other details
specifically for installation planning, refer to one of these documents:

PL/I for MVS & VM Installation and Customization under MVS
PL/I for MVS & VM Program Directory under VM
Language Environment for MVS & VM Installation and Customization under
MVS
Language Environment for MVS & VM Program Directory under VM

There are additional requirements you need to be aware of before you begin to use
PL/I for MVS & VM and Language Environment. These requirements are different
for each system and are described in the following sections.

Table 13. PL/I Element Names

OS PL/I PL/I for MVS & VM

IEL0AA IEL1AA

IKJEN00n IEL1IKJn

IEL0nn IEL1nn

PLInnnnn IEL1Mnnn

PLIXnnn IEL1nnn

PLIHELP IEL1PLIH

24 Copyright IBM Corp. 1964, 1995

If you plan to use the Debug Tool with your PL/I applications, you must have
Language Environment for MVS & VM Release 4 installed on your system.

 MVS Requirements
You must have access to Language Environment when you compile your PL/I for
MVS & VM application. When you compile your application under MVS and you
use existing JCL, be sure your STEPLIB or JOBLIB statement includes SCEERUN
(Language Environment run-time library), unless you are using TASKLIB or
LINKLIB which already includes SCEERUN. You can use the IEL1C cataloged
procedure to compile PL/I applications, or you can continue to invoke the PLIOPT
module directly.

Your compile step should include the following:

//PLI EXEC PGM=IEL1AA,PARM='OBJECT,NODECK',REGION=512K

//STEPLIB DD DSN=IEL.V1R1M1.SIELCOMP,DISP=SHR

// DD DSN=CEE.V1R4Mð.SCEERUN,DISP=SHR

Reading about the cataloged procedures provided with PL/I for MVS & VM can help
you understand the use of SCEERUN during compilation. “Using PL/I Cataloged
Procedures under MVS” is a chapter in PL/I for MVS & VM Programming Guide.

When you link-edit your PL/I for MVS & VM application or relink your OS PL/I
application with Language Environment and you use existing JCL, be sure your
SYSLIB statement includes SCEELKED (Language Environment link-time library).
Language Environment also provides the following three libraries to which you can
link for specific PL/I functions and compatibility support:

SIBMMATH Provides the same results as if you were using the OS PL/I Version
2 Release 3 math library.

SIBMCALL Provides the support for OS PL/I PLICALLA and PLICALLB entry
points.

SIBMTASK Provides the support for PL/I multitasking.

You can use any or all of these libraries at the same time and they can appear in
any order, as long as they are specified before SCEELKED.

You must specify SYSLIB if you plan to use it. Do not include SYSLIB unless you
are using a TASKLIB or LINKLIB which already includes SCEELKED.

If you plan to run your multitasking applications, you must have MVS/ESA SP V5R1
(or later) with OpenEdition MVS Services installed on your system.

 VM Requirements
When you compile your application, you must link to the minidisk that contains
Language Environment for MVS & VM run-time loadlib SCEERUN. You must
include the SCEERUN loadlib in a GLOBAL LOADLIB command before you invoke
the compiler. You can use the IEL1PLI EXEC to compile PL/I applications, or you
can continue to invoke the PLIOPT module directly.

When you link-edit your PL/I for MVS & VM application or relink your OS PL/I
application, you must link to the minidisk that contains the Language Environment
for MVS & VM link-time txtlib SCEELKED. You must include SCEELKED in the
GLOBAL TXTLIB when you load your application. Language Environment also

 Chapter 3. Installation Considerations 25

provides the following three libraries to which you can link for specific PL/I functions
and compatibility support:

SIBMMATH Provides the same results as if you were using the OS PL/I Version
2 Release 3 math library.

SIBMCALL Provides the support for OS PL/I PLICALLA and PLICALLB entry
points.

SIBMTASK Provides the support for PL/I multitasking.

You can use any or all of these libraries at the same time and they can appear in
any order, as long as they are specified before SCEELKED.

When you run your PL/I for MVS & VM or OS PL/I application,. you must link to
the minidisk that contains the Language Environment run-time loadlib SCEERUN.
You must include SCEERUN in the GLOBAL LOADLIB when you run your
application.

Considerations for Using Assembler User Exits
The OS PL/I Version 2 assembler user exits IBMBXITA and IBMFXITA are
supported for compatibility reasons only. Use the Language Environment user exit
CEEBXITA as a replacement.

 Compatibility Considerations
This section describes the restrictions on support for IBMBXITA, IBMFXITA, and
CEEBXITA in different types of load modules:

Relinked OS PL/I Version 2 MAIN load module
Under MVS and VM, when the main procedure is relinked with Language
Environment for MVS & VM, you can use either an Language Environment for
MVS & VM-defined, application-specific CEEBXITA user exit or the existing
IBMBXITA user exit. If you use IBMBXITA, you must use the linkage editor
INCLUDE statement to explicitly include IBMBXITA in the MAIN load module.
You can include both CEEBXITA and IBMBXITA in the MAIN load module. If
Language Environment for MVS & VM finds both CEEBXITA and IBMBXITA at
run time, CEEBXITA is given control.

Under CICS, when the main procedure is relinked with Language Environment
for MVS & VM, only CEEBXITA is supported. The application-specific
CEEBXITA must be linked with the MAIN load module; it affects the newly
created enclave only.

OS PL/I Version 2 MAIN load module
Under MVS and VM, only IBMBXITA is supported. The load module always
contains a copy of IBMBXITA—either an application-specific one or the default
one provided by OS PL/I Version 2.

Under CICS, only IBMFXITA is supported. IBMFXITA can be provided at
installation time only. You must use the linkage editor INCLUDE statement to
explicitly include the desired IBMFXITA into IBMRSAP at installation time. In this
case, IBMFXITA affects every OS PL/I Version 2 transaction in the CICS region.
If IBMFXITA is not included in IBMRSAP, the Language Environment for MVS &
VM-defined default CEEBXITA is given control for every OS PL/I Version 2
transaction in the CICS region.

26 Compiler and Run-Time Migration Guide

PL/I for MVS & VM MAIN load module
Under MVS, VM, and CICS, only CEEBXITA is supported.

For OS PL/I main load module or relinked OS PL/I main load module, the following
rules of precedence show in Table 14 is used to determine which assembler exit is
given control during run time.

Table 14. Rules of Precedence for Assembler User Exits at Run Time

CEEBXITA present

IBMBXITA present under MVS or
VM; IBMFXITA present under
CICS

Exit driven

No No Default version of CEEBXITA

Yes No CEEBXITA

No Yes IBMBXITA under MVS and VM;
IBMFXITA under CICS

Yes Yes CEEBXITA

Changes to Assembler User Exits
The values in some parameters of IBMBXITA and IBMFXITA are supported in the
same way as in previous releases. The following list describes the parameters.

CXIT_LEN
The value of CXIT_LEN is 48.

CXIT_FUNC
Support for CXIT_FUNC has changed as follows:

� The value for both initial and nested enclave initialization is 1.
� The value for both initial and nested enclave termination is 2.
� Neither IBMBXITA nor IBMFXITA is called for process termination.

CXIT_RETURN
On entry, CXIT_RETURN contains the Language Environment-defined enclave
return code. This enclave return code is the PL/I return code plus the Language
Environment return code modifier.

The value might be different from the value that would have been passed under
OS PL/I Version 2. For VM, the Language Environment return code modifier
contains six digits. Further, the severity of some conditions is different between
OS PL/I and Language Environment. On return, the function of CXIT_RETURN
remains unchanged.

When you migrate your applications from OS PL/I Version 2, remember that the
CXIT_RETURN value and the CXIT_REASON value can be different from those
in OS PL/I Version 2. If IBMBXITA or IBMFXITA is dependent on a particular
nonzero CXIT_RETURN or CXIT_REASON value, you must modify that
dependency in IBMBXITA or IBMFXITA to match the value in Language
Environment.

CXIT_REASON
Values defined by OS PL/I Version 2 for CXIT_REASON are no longer
supported. On entry, CXIT_REASON contains the Language
Environment-defined return code modifier. The value can be different from the
value that would have been passed under OS PL/I Version 2. See
CXIT_RETURN on page 27 for explanation of dependency.

On return, the function of CXIT_REASON remains unchanged.

 Chapter 3. Installation Considerations 27

CXIT_FLAGS
The definitions for CXIT_ABTRM, CXIT_ABND, and CXIT_DUMP are the same
as they were in OS PL/I Version 2. The entire OS task terminates abnormally
under MVS if you set CXIT_ABND to 1.

For more information, see OS PL/I Version 2 Release 3 Programming Guide.

CXIT_PARM
The CXIT_PARM parameter value has changed as follows:

� On entry, CXIT_PARM contains an address pointing to your user parameter
list, without run-time options, from the invocation level of the main program.
The user parameter list has already been processed based on parameter
list style rules.

� On return, the value in CXIT_PARM is saved as a user parameter and later
passed to the main program.

CXIT_WORK
CXIT_WORK is unchanged.

CXIT_OPTIONS
Under MVS and VM, CXIT_OPTIONS can contain an options list that you
provide. The rules of precedence for merging the options list are the same as
they were in OS PL/I Version 2, but the options are supported according to the
rules defined in Language Environment (see Language Environment for MVS &
VM Programming Guide). Under CICS, CXIT_OPTIONS remains unsupported.

CXIT_USERWD
CXIT_USERWD retains its OS PL/I Version 2 function, except that the
USERWD is passed without alteration to every user exit across multiple
enclaves.

CXIT_CODES
CXIT_CODES retains its OS PL/I Version 2 function; that is, it specifies a list of
abend codes that are handled by the Language Environment condition handler.
You must include the abends 777, 778, and U3501 in CXIT_CODES so your
database can roll back under IMS or DB2.

CXIT_PAGE
The IBM-supplied default is still 32K. CXIT_PAGE is unchanged.

When you migrate your applications from OS PL/I Version 2 Release 3,
remember that the displacement of CXIT_PAGE in IBMBXITA and IBMFXITA
under OS PL/I Version 2 Release 3 is different from that of CEEBXITA. You
cannot rename these user exits to CEEBXITA as a shortcut.

 Specific Considerations
� Under VM, the IBM-supplied default CEEBXITA issues FILEDEFs for SYSIN,

SYSOUT, and CEEDUMP without the PERM option. The default CEEBXITA
no longer issues FILEDEFs for SYSPRINT and PLIDUMP. However, if you do
not supply your own FILEDEF for SYSPRINT, the VM default file is used during
OPEN. If the dump file is not present during OPEN, Language Environment
dynamically allocates the CEEDUMP file.

� If you use the MSGFILE(SYSPRINT) option so run-time messages are directed
to the STREAM PRINT OUTPUT file, and your IBMBXITA clears the
SYSPRINT file during termination, you must remove the FILEDEF CLEAR
statement of the SYSPRINT file from IBMBXITA. Otherwise, the SYSPRINT

28 Compiler and Run-Time Migration Guide

file is treated as a process resource and will not be cleared until Language
Environment process termination. If IBMBXITA is in effect, it is given control for
Language Environment enclave initialization and termination only.

� The PLIDUMP or CEEDUMP file for the dump output is also treated as a
process resource and must not be cleared during enclave termination. If your
IBMBXITA contains the FILEDEF CLEAR for the dump file during termination,
you must remove the FILEDEF CLEAR for the dump file. If you do not remove
the FILEDEF CLEAR for the dump file, the result is unpredictable.

� The OS PL/I abend exit IBMBEER is ignored under Language Environment.
See “Differences in Condition Handling” on page 13 for forcing an abend under
Language Environment.

For more information on assembler language user exits, see the Language
Environment for MVS & VM Programming Guide.

Considerations for Using High-Level Language User Exits
The OS PL/I Version 2 High-Level Language (HLL) user exit IBMBINT is no longer
recommended; it is only supported for compatibility. Instead, you should use the
Language Environment HLL user exit CEEBINT.

The way in which IBMBINT is given control now depends on the version of PL/I in
which it is used. The following describes support for IBMBINT:

Relinked OS PL/I Version 2 Release 2 or Release 3 MAIN load module
Only CEEBINT is supported. To continue to use IBMBINT, you must rename
IBMBINT to CEEBINT. CXIT_USERWD is shared across multiple enclaves.

OS PL/I Version 2 Release 2 or Release 3 MAIN load module
Only IBMBINT is supported. The load module always contains a copy of
IBMBINT, either the application-specific one or the default one provided by OS
PL/I Version 2 Release 2 or Release 3.

PL/I for MVS & VM MAIN load module
Only CEEBINT is supported. The load module always contains a copy of
CEEBINT, either the application-specific one or the default one provided by
Language Environment.

If you write CEEBINT in PL/I, you must write it in PL/I for MVS & VM, OS PL/I
Version 2 Release 2 or Release 3. If CEEBINT calls any PL/I routines, those
routines must also be written in one of these language releases.

Do not use the OPTIONS(MAIN) statement in the PL/I HLL user exit.

The STOP statement terminates the application.

 Chapter 3. Installation Considerations 29

Considerations for Using Language Environment Abnormal
Termination Exit

Language Environment provides an abnormal termination exit for an application
terminating with an unhandled condition of severity 2 or greater. The exit allows
you to collect problem determination data before Language Environment frees the
resources it has acquired. This exit is available under MVS only.

With the default abnormal termination exit, CEEBDATX, you will receive the U4039
abend and optionally a system dump if you provides a SYSABEND or SYSUDUMP
DD card. The application then continues its termination with a return code if
ABTERMENC(RETCODE) is in effect or an abend code if ABTERMENC(ABEND) is
in effect.

If you do not want the abnormal termination exit to get control, or you want the
abnormal termination exit to do something else such as BR 14, when you install
Language Environment, you must update the CEEEXTAN CSECT in SCEERUN by
changing the CEEXART macro and then run the CEEWDEXT (for CICS it's
CEEWCEXT) JCL. See Language Environment for MVS & VM Installation and
Customization under MVS for details.

Language Environment sample library SCEESAMP contains a sample exit,
CEEBNATX, which simply does BR 14. You can assemble, name CEEBNATX to
CEEBDATX, and put this CEEBDATX into a dataset that is concatenated before
SCEERUN. In this case, SCEERUN still contains the default CEEBDATX.

Considerations for relinking the Shared Library
The OS PL/I Shared Library must be replaced with Language Environment stubs in
order to provide support for OS PL/I Version 1 Release 5.1 and Version 2 load
modules that use the Shared Library. IBM has provided you with sample jobs
(IBMRLSLB for OS PL/I Version 1 Release 5.1 non-CICS nonmultitasking Shared
Library and IBMRLSLA for the other releases or multitasking Shared Library)
located in SCEESAMP that help you replace your Shared Library with Language
Environment stubs.

OS PL/I applications that use the Shared Library are supported by Language
Environment if the following conditions are true:

� The Shared Library is OS PL/I Version 1 Release 5.1 or Version 2
� The Shared Library was created with all PLRSHR options
� The Shared Library is replaced with Language Environment stubs

If any of the above conditions is not true, the application is not supported. You
must relink your application with Language Environment or OS PL/I Version 2.
Once the application is relinked, it no longer uses the OS PL/I Shared Library
feature.

Note that you must also observe the rules of supporting OS PL/I object and load
modules under Language Environment. See Chapter 4, “Object and Load Module
Considerations” on page 32 for details.

30 Compiler and Run-Time Migration Guide

When you replace your Shared Library with Language Environment stubs using the
sample JCL IBMRLSLA or IBMRLSLB, you need to consider the following
concatenations:

� SIBMMATH before SCEELKED if OS PL/I math routine is desired
� SIBMTASK before SCEELKED if multitasking Shared Library is used

Once the Shared Library is replaced with Language Environment stubs, you cannot
apply OS PL/I maintenance to it. The AMODE and RMODE of the replaced Shared
Library must remain the same unless all applications that use the Shared Library
have changed to a different set of AMODE and RMODE.

See “OS PL/I Shared Library Replacement Tool” on page 55 for details of how to
use IBMRLSLA and IBMRLSLB.

 Chapter 3. Installation Considerations 31

Chapter 4. Object and Load Module Considerations

This chapter describes factors that affect the compatibility of OS PL/I object and
load modules in the Language Environment for MVS & VM environment. It
discusses the following types of considerations:

� OS PL/I Version 1 object and load module compatibility
� OS PL/I Version 2 object and load module compatibility
� Summary of support for OS PL/I

All of the library routines in a load module must be from the same release of the
run-time library. For example, Language Environment stubs, OS PL/I Shared
Library stubs, and OS PL/I resident library routines cannot exist in the same load
module.

OS PL/I Version 1 Object Module and Load Module Compatibility
Language Environment supports object modules and load modules for OS PL/I
Version 1 with some restrictions. You can continue to use most of your Version 1
object and load modules if you observe the rules described in the following
sections.

If a load module contains an OS PL/I Version 1 object module but is linked with OS
PL/I Version 2 resident library, the load module is considered an OS PL/I Version 2
load module and the rules for OS PL/I Version 2 apply. However, if the load
module contains OS PL/I Version 1 Release 1.0 - 2.3 object modules, the object
module must be recompiled.

If a load module contains the OS PL/I abend exit, IBMBEER, the abend exit is
ignored by Language Environment. See “Considerations for Using Assembler User
Exits” on page 26 for more information on this topic.

OS PL/I Version 1 Release 5.1

 Object Module
The object module is supported.

Load Module Not Using Shared Library:
� Main load module for MVS non-CICS nonmultitasking

The OS PL/I bootstrap routine, IBMBPIRA, always linked with a user load
module, contains features such as the fast initialization and termination that are
not compatible with Language Environment. A sample ZAP, IBMRZAPM, is
provided in Language Environment SCEESAMP to help you deactivate those
incompatible features. The sample ZAP is described in “OS PL/I Version 1
Release 5.1 Main Load Module ZAP” on page 54.

ZAPped load modules continue to work under OS PL/I V1.5.1 and V2, as well
as Language Environment. However, performance degradation might occur if
the original load module contains the fast initialization and termination feature.

If you do not ZAP your load module, you must do one of the following:

32 Copyright IBM Corp. 1964, 1995

– Relink your object module with Language Environment or OS PL/I Version
2

– Use the OS PL/I Library Routine Replacement Tool to replace the library
routines in the load module with Language Environment stubs

� Main load module for MVS non-CICS multitasking

The load module is supported.

� Main load module under CICS

The load module is supported.

� Main load module under VM

The OS PL/I VM-specific bootstrap routine, DMSIBM, contains features that are
not compatible with Language Environment. A sample ZAP, IBMRZAPV, is
provided in Language Environment SCEESAMP to help you deactivate the
incompatible features. The sample ZAP is described in “OS PL/I Version 1
Release 5.1 Main Load Module ZAP” on page 54.

The ZAPped load module is supported under Language Environment only. It
no longer works under OS PL/I Version 1 or Version 2. If you do not ZAP
your load module, you must do one of the following:

– Relink your object module with Language Environment or OS PL/I Version
2

– Use the OS PL/I Library Routine Replacement Tool to replace the library
routines in the load module with Language Environment stubs

See “OS PL/I Library Routine Replacement Tool” on page 53 for a
description of this tool.

� FETCHed subroutine load module

The load module is supported.

Load Module Using the Shared Library
The load module is supported as long as the OS PL/I V1R5.1 Shared Library was
created with all PLRSHR options and the Shared Library, including the multitasking
Shared Library, is replaced with Language Environment stubs. The Shared Library
needs to be replaced only once during Language Environment installation.

If the Shared Library was not created with all PLRSHR options or the Shared
Library is not replaced with Language Environment stubs, the object module must
be relinked with Language Environment or OS PL/I Version 2, or you can replace
the Shared Library stubs in the load module with Language Environment stubs.
After the object module is relinked or the load module is replaced, the OS PL/I
Shared Library feature is no longer used.

 Chapter 4. Object and Load Module Considerations 33

OS PL/I Version 1 Release 5.0
OS PL/I Version 1 Release 5.0 provides support only for MVS applications. VM
and CICS are not supported in Release 5.0.

 Object Module
The object module is supported.

 Load Module
The load module is not supported, whether or not you use the Shared Library. You
must relink your object module with Language Environment or OS PL/I Version 2,
or you can use the OS PL/I Library Routine Replacement Tool to replace the library
routines in the load module with Language Environment stubs. See “OS PL/I
Library Routine Replacement Tool” on page 53 for a description of this tool.

OS PL/I Version 1 Release 3.0 - Release 4.0

 Object Module
 � Under MVS

The object module is supported except for the CICS macro language.

 � Under VM

The object module is supported.

 Load Module
The load module is not supported, whether or not you use the Shared Library. You
must relink your object module with Language Environment or OS PL/I Version 2,
or you can use the OS PL/I Library Routine Replacement Tool to replace the library
routines in the load module with Language Environment stubs. See “OS PL/I
Library Routine Replacement Tool” on page 53 for a description of this tool.

OS PL/I Version 1 Prior to Release 3.0
Object modules or load modules created prior to Release 3.0 are not supported
and you must recompile your application with PL/I for MVS & VM or OS PL/I
Version 2.

OS PL/I Version 2 Object Module and Load Module Compatibility
Object modules and load modules created with OS PL/I Version 2 can run without
relinking if they do not contain any features that are not supported or that require
relinking.

Language Environment supports OS PL/I applications that contain the PL/I
assembler user exit, IBMxXITA. See “Considerations for Using Assembler User
Exits” on page 26 for more information on this topic.

34 Compiler and Run-Time Migration Guide

Summary of Support for OS PL/I Object and Load Modules
The following table summarizes the PL/I object- and load-module support described
in this chapter:

Table 15. Summary of Object and Load Module Support by Language Environment

Support description

V2

V1R5.1

V1R5.0

V1R3.0-
V1R4.0

Prior to
V1R3.0

Main load module Yes3 Yes1,3 No No No

Fetched subroutine load module Yes3 Yes3 No No No

Object module Yes Yes Yes Yes2 No

1Use OS PL/I Version 1.5.1 load module ZAP for MVS non-CICS nonmultitasking or VM load modules
2CICS macro language is not supported.
3Shared Library must be created with all PLRSHR options and must be replaced with Language
Environment stubs.

 Chapter 4. Object and Load Module Considerations 35

 Chapter 5. Link-Edit Considerations

This chapter describes factors you must consider when you link-edit an object
module produced by different releases of OS PL/I and PL/I for MVS & VM. It
includes the following sections:

� Symbol table considerations
� NCAL linkage editor option
� GENMOD for VM
� Using OS PL/I math routines

 � Using multitasking
� Using OS PL/I PLICALLA or PLICALLB entry

Symbol Table Considerations
If you link-edit an object module produced by different releases of PL/I, and the
object module contains symbol tables for external variables, the symbol table that
appears in the resultant load module must be the one produced by the most recent
release of PL/I.

The compiler produces an object module that contains external symbol table control
sections (CSECTs) if your program includes one or more of the following PL/I
features:

� GET DATA statements for external variables
� PUT DATA statements for external variables
� The TEST(SYM) compile-time option for external variables

If your program uses one or more of these features with external variables, you
must ensure that the correct symbol table appears in your load module. Place the
object module produced by the most recent release of PL/I ahead of all other object
modules in the link-edit job stream. If more than one object module produces a
symbol table CSECT with the same name, the linkage editor keeps the symbol
table CSECT that it encounters first and discards the other symbol tables.

For example, suppose you link-edit an object module produced by OS PL/I Version
1 Release 5.1 with an object module produced by PL/I for MVS & VM. Put the
object module produced by PL/I for MVS & VM ahead of the object module
produced by OS PL/I Version 1 Release 5.1 in the link-edit job stream. By doing
this, the linkage editor keeps the symbol table produced by PL/I for MVS & VM if
both object modules produce symbol tables.

NCAL Linkage Editor Option
Under Language Environment, the NCAL linkage editor option is no longer required
when you link-edit your subroutine object modules for the future use. This is true
for both PL/I for MVS & VM and OS PL/I produced object modules. Once these
object modules are linked with Language Environment, they contain Language
Environment stubs. Those stubs are compatible among Language Environment
releases.

Note that a load module must not contain Language Environment stubs and OS
PL/I resident library routines.

36 Copyright IBM Corp. 1964, 1995

GENMOD for VM
If you are using GENMOD to create VM modules, use the RLDSAVE option in the
LOAD and INCLUDE commands. The PL/I for MVS & VM object module
nominates the CEESTART CSECT as the main entry point. However, if you are
using GENMOD with a combination of OS PL/I and PL/I for MVS & VM object
modules, specify FROM PLISTART if the main program is OS PL/I or FROM
CEESTART if the main program is PL/I for MVS & VM.

PL/I programs that use the VM LOAD and INCLUDE commands can specify the
HOBSET, HOBSETSD, or NOHOBSET options. Before you use HOBSET or
HOBSETSD, understand the special considerations and restrictions that apply to
these options. For detailed information, see the Language Environment for MVS &
VM Programming Guide. There are no special considerations or restrictions for
NOHOBSET.

Using OS PL/I Math Routines
Language Environment provides a set of math routines, including routines for
exponentiation. For most commonly used routines, Language Environment
produces more accurate results than OS PL/I. Some of Language Environment
routines also have better performance than OS PL/I. You should use Language
Environment-provided math routines.

Language Environment also provides the OS PL/I math routines to help you to
migrate to Language Environment. However, the OS PL/I math routines are
provided for compatibility only and will be withdrawn in the future.

If your application must use the OS PL/I math routines under Language
Environment, when you link-edit your object module (produced by OS PL/I or PL/I
for MVS & VM), place SIBMMATH in front of SCEELKED.

When you run your PL/I for MVS & VM or OS PL/I application under Language
Environment and you use existing JCL, be sure your STEPLIB or JOBLIB
statement includes SCEERUN, unless you TASKLIB or LINKLIB which already
includes SCEERUN.

 Using Multitasking
When you link-edit a multitasking object module, produced by OS PL/I or PL/I for
MVS & VM, with Language Environment, you must concatenate SIBMTASK in front
of SCEELKED. See “Differences in Multitasking Support” on page 10 for details.

Using OS PL/I PLICALLA or PLICALLB Entry
If you recompile every PL/I program with PL/I for MVS & VM in the main load
module that uses OS PL/I PLICALLA or PLICALLB as the main entry point, when
you link-edit the object modules, you might need to place SIBMCALL in front of
SCEELKED. See “PLICALLA Considerations” on page 4 and “PLICALLB
Considerations” on page 6 for details.

 Chapter 5. Link-Edit Considerations 37

 Chapter 6. Compile-Time Considerations

This chapter describes the following compile-time considerations:

� Dependency on Language Environment for MVS & VM
� Large arrays and aggregates
� Compatibility considerations for OS PL/I Version 1 source code
� Differences in user return codes
� Storage report changes
� Compiler message changes
� Messages that PL/I issues for errors in the PLIXOPT string

Dependency on Language Environment for MVS & VM
Language Environment for MVS & VM must be available whenever you compile a
PL/I application.

Large Arrays and Aggregates
If all of your existing object modules were produced by OS PL/I Version 2 with the
CMPAT(V2) compile-time option, your object module is fully compatible with object
modules produced by PL/I for MVS & VM, provided you continue to use the
CMPAT(V2) compile-time option.

If some or all of your existing object modules were produced by OS PL/I Version 2
with the CMPAT(V1) compile-time option or by OS PL/I Version 1 Release 5.1, the
following considerations apply when you link-edit:

� If arrays, aggregates, or AREAs are to be shared between OS PL/I Version 1
Release 5.1 or OS PL/I Version 2 (compiled with the CMPAT(V1) option) object
modules and PL/I for MVS & VM object modules, PL/I for MVS & VM
compilations must use the CMPAT(V1) option.

� If arrays, aggregates, or AREAs are to be shared between OS PL/I Version 2
(compiled with the CMPAT(V2) option) object modules and PL/I for MVS & VM
object modules, PL/I for MVS & VM compilations must use the CMPAT(V2)
option.

You must use the CMPAT(V2) compile-time option to use arrays, aggregates or
AREAs larger then 32K. The CMPAT(V2) option is recommended even if you do
not use larger arrays, aggregates, or AREAs.

Figure 1 on page 39 shows the differences between compiling with CMPAT(V1)
and CMPAT(V2). For more information about the CMPAT option, see the PL/I for
MVS & VM Programming Guide.

38 Copyright IBM Corp. 1964, 1995

 /\ Built-in functions DIM, HBOUND, LBOUND and ALLOCATION return \/

 /\ fullword values when compiled with CMPAT(V2) and return halfword \/

 /\ values when compiled with CMPAT(V1). \/

 DC51ð: PROC OPTIONS(MAIN);

 DCL BA219(25:28) BIT(4) AUTOMATIC VARYING ALIGNED;

 DCL BU114(2,2) BIT(8ð) CONTROLLED UNALIGNED;

 ALLOCATE BU114;

 CALL INT;

 INT: PROC;

DCL BA221(1ð92:1ð95) BIT(15) ALIGNED INIT(HBOUND(BA219,1),

 LBOUND(BA219,1),

 ALLOCATION(BU114));

 BA221(1ð95) = ALLOCATION(BU114);

 PUT DATA (BA221(1ð92),BA221(1ð93),BA221(1ð94),BA221(1ð95));

 DCL BA222(1ð92:1ð95) BIT(31) ALIGNED INIT(HBOUND(BA219,1),

 LBOUND(BA219,1),

 ALLOCATION(BU114));

 BA222(1ð95) = ALLOCATION(BU114);

 PUT DATA (BA222(1ð92),BA222(1ð93),BA222(1ð94),BA222(1ð95));

 END INT;

 END DC51ð;

 Run-time output if compiled with CMPAT(V1):

 BA221(1ð92)='ðððððððððð111ðð'B BA221(1ð93)='ðððððððððð11ðð1'B

 BA221(1ð94)='ðððððððððððððð1'B BA221(1ð95)='ðððððððððððððð1'B;

 BA222(1ð92)='ðððððððððð111ðððððððððððððððððð'B BA222(1ð93)='ðððððððððð11ðð1ðððððððððððððððð'B

 BA222(1ð94)='ðððððððððððððð1ðððððððððððððððð'B BA222(1ð95)='ðððððððððððððð1ðððððððððððððððð'B;

 Run-time output if compiled with CMPAT(V2):

 BA221(1ð92)='ððððððððððððððð'B BA221(1ð93)='ððððððððððððððð'B

 BA221(1ð94)='ððððððððððððððð'B BA221(1ð95)='ððððððððððððððð'B;

 BA222(1ð92)='ðððððððððððððððððððððððððð111ðð'B BA222(1ð93)='ðððððððððððððððððððððððððð11ðð1'B

 BA222(1ð94)='ðððððððððððððððððððððððððððððð1'B BA222(1ð95)='ðððððððððððððððððððððððððððððð1'B;

Figure 1. Differences between Compiling with CMPAT(V1) and CMPAT(V2)

Compatibility Considerations for OS PL/I Version 1 Source Code
Source code compatibility with Version 1 is supported with the following exceptions:

� CHARSET(48) and CHARSET(BCD) are no longer supported.

� Graphic DBCS varies slightly from old EGCS in that the shift-in and shift-out
code points are fixed.

� When using CMPAT(V2), the following items cause incompatibilities at run time:

– Arrays (including arrays of structures and structures of arrays), whether
these have fullword subscripts or not.

– BASED and CONTROLLED AREAs and aggregates, whether these are
larger than 16 megabytes or not.

 Chapter 6. Compile-Time Considerations 39

– Expressions that use values returned by the HBOUND, LBOUND, DIM, and
ALLOCATION built-in functions. These built-in functions now return FIXED
BIN(31) results instead of FIXED BIN(15) results. However, if you specify
CMPAT(V1), they return FIXED BIN(15) results.

� Processing of %INCLUDE statements now delimits text inclusions with “begin”
and “end” comments.

� The preprocessor now treats character codes outside the range of '40'X
through 'FF'X as delimiters if they are not part of a string constant.

� Suffixes that follow string constants are not replaced by the
preprocessor—whether these are legal PL/I suffixes or not—unless you insert a
delimiter between the ending quotation mark of the string and the first letter of
the suffix. For example:

%DCL (GX, XX) CHAR;

%GX='||FX';

%XX='||ZZ';

DATA = 'STRING'GX;

DATA = 'STRING'XX;

DATA = 'STRING' GX;

DATA = 'STRING' XX;

under Version 1 produces the source:

DATA = 'STRING'||FX;

DATA = 'STRING'||ZZ;

DATA = 'STRING' ||FX;

DATA = 'STRING' ||ZZ;

whereas, under Version 2 it produces:

DATA = 'STRING'GX;

DATA = 'STRING'XX;

DATA = 'STRING' ||FX;

DATA = 'STRING' ||ZZ;

Differences in User Return Codes
The PL/I built-in functions that support user return codes now have a precision of
FIXED BIN(31) under PL/I for MVS & VM. This change affects the following:

� You can use the PLIRETC built-in subroutine to set return codes with a value
greater than 999 under PL/I for MVS & VM.

In OS PL/I, PLIRETC does not accept values greater than 999. If you set the
value greater than 999, PLIRETC resets the value to 999 and issues an
informational message. You must recompile your program with PL/I for MVS &
VM to take advantage of the fullword return code.

� The OS PL/I PLIRETV built-in function returns a FIXED BIN(15) value. You
must relink with Language Environment to take advantage of the fullword return
code.

� The OS PL/I RETCODE option saves the return code in the lower two bytes of
register 15. PL/I for MVS & VM uses a fullword in register 15 for the return
code. If you use the RETCODE option and your application is a mixture of PL/I
for MVS & VM and OS PL/I Version 2 Release 3, Language Environment
returns a halfword return code when the option is found in OS PL/I and a
fullword return code when the option is found in PL/I for MVS & VM, even

40 Compiler and Run-Time Migration Guide

though you relink your application. You must recompile your program with PL/I
for MVS & VM to receive a fullword return code when using the RETCODE
option.

User return codes are also discussed in “Differences in User Return Code” on
page 13.

Storage Report Changes
The PLIXHD variable is no longer used as the heading in storage reports. The
identifier PLIXHD is no longer special; you can declare it and use it as you would
declare and use any other variable.

Compiler Message Changes
This section lists the numbers of PL/I compiler messages that have changed. For
detailed descriptions of messages, see PL/I for MVS & VM Compile-Time
Messages and Codes.

Notes:

1. The messages produced for run-time options specified in the PLIXOPT string
are different. In most cases, these messages now refer you to the description
of a similar Language Environment for MVS & VM run-time message. For
more information about messages produced for run-time options specified in
the PLIXOPT string, see “Messages That PL/I Issues for Errors in the PLIXOPT
String” on page 42.

2. The severity of the preprocessor messages IEL0115I, IEL0163I, and IEL0201I
has been reduced to W.

3. The compiler no longer issues message IEL0983I for Language Environment
callable service names.

The following compiler messages have been added:

The following compiler messages have been changed:

The following compiler messages are no longer valid:

IEL0040I IEL0573I IEL0952I
IEL0048I IEL0574I IEL0953I
IEL0537I IEL0575I IEL0985I
IEL0558I IEL0576I IEL0995I
IEL0566I IEL0577I IKJ65080I
IEL0567I IEL0756I IKJ65081I
IEL0570I IEL0936I IKJ65082I
IEL0571I IEL0950I IKJ65083I
IEL0572I IEL0951I

IEL0001I IEL0233I IEL0966I
IEL0115I IEL0670I IEL0967I
IEL0163I IEL0772I IEL0970I
IEL0201I IEL0809I IKJ65035I
IEL0230I IEL0929I IKJ65059I

IEL0043I IEL0726I IEL0959I
IEL0430I IEL0954I IEL0983I
IEL0547I IEL0958I

 Chapter 6. Compile-Time Considerations 41

Messages That PL/I Issues for Errors in the PLIXOPT String
The PLIXOPT variable is a varying-length character string that contains run-time
options you can specify at compile time. The messages that the compiler produces
to diagnose errors in these options have changed. In most cases, the PL/I
messages now list an associated Language Environment message that you should
read for more information about the error.

PL/I parses the PLIXOPT string and produces the Language Environment
CEEUOPT csect. If you explicitly include CEEUOPT in your recompiled application
ahead of the compiler-generated CEEUOPT CSECT, the explicitly included
CEEUOPT CSECT will override the one generated by the compiler for the options
specified in the PLIXOPT string.

The following messages describe different types of problems that can occur with
the run-time options specified in a PLIXOPT string.

Message IEL0950I (Warning)
A severe error occurred in the PLIXOPT string. Generally, this message
indicates that the error is severe enough to cause the parsing of the string to
fail.

You must correct the errors that cause this message.

Message IEL0951I (Warning)
An error occurred in a run-time option in the PLIXOPT string. This message
indicates that the string contains an item that is not a valid run-time option. This
message is issued for items that are not recognized as valid run-time options,
including run-time options that are no longer supported.

You must correct the errors that cause this message.

Message IEL0952I (Informational)
A possible problem exists with a run-time option in the PLIXOPT string. This
message is issued for OS PL/I run-time options that have been replaced with
similar Language Environment run-time options. The OS PL/I options are
automatically converted to the appropriate Language Environment options, but
some of the Language Environment options might not function exactly as the
OS PL/I options did.

You should convert these OS PL/I options to the appropriate Language
Environment option, and check to see if the Language Environment for MVS &
VM option is different from the OS PL/I option.

Message IEL0953I (Informational)
A possible incompatibility exists in the support for a run-time option in the
PLIXOPT string. This message is issued for OS PL/I run-time options that have
been replaced by similar Language Environment run-time options, but might not
be supported exactly as OS PL/I supported them.

For example, this message is issued for the OS PL/I NOSPIE and NOSTAE
options because both options map to the Language Environment TRAP option.
TRAP(ON) implies both SPIE and STAE, and TRAP(OFF) implies both NOSPIE
and NOSTAE; under Language Environment, there is no support that is
equivalent to the support that OS PL/I provided for the combinations SPIE and
NOSTAE, or NOSPIE and STAE. To see how SPIE and STAE map to TRAP,
see Table 12 on page 18.

42 Compiler and Run-Time Migration Guide

 Chapter 7. Subsystem Considerations

This chapter discusses subsystem-specific considerations that you need to know
when you migrate your applications running under CICS, IMS, and DB2.

 CICS Considerations
Language Environment provides the same level of OS PL/I object and load module
support as for non-CICS. See Chapter 4, “Object and Load Module
Considerations” on page 32 for details. If you are running under CICS Version 3
Release 3, you must ensure the CICS APAR PN38032 is installed. Without
PN38032, your application trying to use Language Environment will receive the
APLE abend.

The CICS Storage Protect facility was introduced under CICS 3.3. This provides
more data integrity and security for the application program and especially for the
entire CICS region. Because of the new feature, you might discover that some of
the successfully running OS PL/I applications start to fail with ASRA(0C4) abend
and the CICS message DFHSR0622.

If the above problem is happening in your OS PL/I application program, either of
the following two methods might be able to fix your problem:

1. Set the CICS system initialization parameter RENTPGM=NOPROTECT. This
sets the protection of the user program in user key. Notice the default for
RENTPGM is PROTECT.

2. Relink your OS PL/I application program under Language Environment with
APAR PN38032 installed.

If the stream output function is used in your OS PL/I CICS application, especially
the PUT DATA; statement, it might trigger the above error. PL/I stream output
function is intended for debugging purposes only. For the performance reason, it is
recommended not to be included in the production programs.

Updating CICS System Definition (CSD) File
When you bring up a CICS region with Language Environment, you must ensure
the module names listed in Language Environment CEECCSD are defined in the
CSD. You can locate CEECCSD in SCEESAMP. If you use CICS Version 4
autoinstall facility, you do not need to define Language Environment modules
manually in the CSD.

 Error Handling
A diagnostic message is issued only if there is no ERROR ON-unit established in
the program, or the ERROR ON-unit does not recover from the condition by using a
GOTO out of block.

 Copyright IBM Corp. 1964, 1995 43

Support for IBMFXITA
CICS supports the assembler user exit IBMFXITA only for compatibility; however, it
is not recommended. Instead you should convert to CEEBXITA, which is supplied
by Language Environment. Also, Language Environment does not supply a default
IBMFXITA.

If your application requires IBMFXITA, you must:

� Provide IBMFXITA when you install the product. This affects every OS PL/I
Version 2 transaction in the CICS region that has not been relinked to run with
Language Environment for MVS & VM.

� Relink your application using the linkage editor INCLUDE statement to include
the desired IBMFXITA with IBMRSAP or the IBM-supplied default CEEBXITA
gets control of every OS PL/I Version 2 transaction in the CICS region.

If you relink your OS PL/I applications with Language Environment, you must use
CEEBINT. IBMBINT is not supported for any relinked OS PL/I applications under
CICS.

 Macro-Level Interface
The CICS macro-level interface is not supported.

Relinking CICS Applications
When you relink OS PL/I object modules (see Chapter 4, “Object and Load Module
Considerations” on page 32 for description of object-module support under
Language Environment for MVS & VM) with Language Environment for MVS & VM,
you must use the following linkage-editor statements:

INCLUDE SYSLIB(CEESTART)

INCLUDE SYSLIB(CEESGð1ð)

INCLUDE SYSLIB(DFHELII)

REPLACE PLISTART

CHANGE PLIMAIN(CEEMAIN)

INCLUDE objlib(objmod)

ORDER CEESTART

ENTRY CEESTART

NAME loadmod(R)

Where:

objlib represents the PDS that contains the object modules
objmod represents the name of the object module
loadmod represents the name of the resultant load module

The INCLUDE of the object module must occur immediately after the CHANGE
statement. Also, the object module of the main procedure must be included before
any object modules of subroutines. This was not required for OS PL/I.

SYSTEM(CICS) Compile-Time Option
If you compile with SYSTEM(CICS) compile-time option, PL/I enforces the
OPTIONS(BYVALUE) procedure option for MAIN procedures.
OPTIONS(BYVALUE) is the default. If you specify OPTIONS(BYADDR), the
compiler diagnoses it as an error and applies OPTIONS(BYVALUE) instead.

44 Compiler and Run-Time Migration Guide

FETCHing a PL/I MAIN Procedure
CICS does not support PL/I FETCHing a PL/I MAIN procedure.

STACK Run-Time Option
Language Environment supports PL/I for MVS & VM applications that use the
run-time option STACK(,,ANY). Language Environment also supports
STACK(,,ANY) for OS PL/I applications that have been relinked with Language
Environment for MVS & VM as long as the applications meet the following
conditions:

� Application does not contain any edited stream I/O (for example, EDIT was not
used in a PUT statement)

� Application specifies AMODE(31).

 Run-Time Output
Run-time output is now transmitted to a CICS transient data queue CESE.
Language Environment ignores the MSGFILE option under CICS. Figure 2 shows
format of the output data queue.

┌────┬─────────┬───────────┬──┬───────────────┬──┬──────┐

│ │Terminal │Transaction│B │ DateTime │B │Data │

│ASA │ id │ id │ │ YYYYMMDDHHMMSS│ │ │

│ │ │ │ │ │ │ │

└────┴─────────┴───────────┴──┴───────────────┴──┴──────┘

Figure 2. CESE Output Data Queue

In addition, PL/I transient queues CPLI and CPLD are no longer used. As a result,
you do not need to specify entries for the CPLI and CPLD in the CICS Destination
Control Table (DCT).

Abend Codes Used by PL/I under CICS
The APLx abend codes that were issued under OS PL/I Version 2 are no longer
issued. Instead, Language Environment-defined abend codes are issued. For
more information about Language Environment abend codes, see the Language
Environment for MVS & VM Debugging Guide and Run-Time Messages.

Shared Library Support
Language Environment provides the same support for OS PL/I Shared Library
under CICS as it does under non-CICS. See Chapter 3, “Installation
Considerations” on page 24 for details. If you relink your Shared Library using
IBMRLSLA, you must add the following to the CSD and add IBMBPSMA and
IBMBPSLA to the LPA area.

DEFINE PROGRAM(IBMBPSMA) GROUP(CEE) LANGUAGE(ASSEMBLER)

DEFINE PROGRAM(IBMBPSLA) GROUP(CEE) LANGUAGE(ASSEMBLER)

If the Shared Library is not supported by Language Environment or you choose not
to relink the Shared Library, you must relink your OS PL/I applications that used the
Shared Library. In this case, the following actions apply:

� You do not have to specify PLISHRE=YES in the CICS System Initialization
Table (SIT).

� You do not have to specify PLI=YES in the SIT.

 Chapter 7. Subsystem Considerations 45

Linking PL/I for MVS & VM Applications
You are no longer required to take special actions when you link a PL/I for MVS &
VM object module under CICS. The CEESTART CSECT is the entry point for
programs compiled with OPTIONS(MAIN) or OPTIONS(FETCHABLE). However, if
a subroutine that was not compiled with OPTIONS(FETCHABLE) is FETCHed or
called, you must code the linkage editor ENTRY statement so that it nominates the
actual entry point.

 IMS Considerations
Language Environment provides IMS the same level of OS PL/I object and load
module support as for non-IMS. See Chapter 4, “Object and Load Module
Considerations” on page 32 for details.

Interfaces to IMS
Language Environment supports the PLITDLI, ASMTDLI, and EXEC DLI interfaces
from a PL/I routine. It also supports CEETDLI interface from a PL/I for MVS & VM
routine running under IMS/ESA Version 4.

Under Language Environment, CEETDLI is the recommended interface. CEETDLI
supports calls that use an Application Interface Block (AIB) or a Program
Communication Block (PCB). CEETDLI is available under IMS/ESA Version 4. For
more information about AIB and a complete description of the CEETDLI interface,
see IMS/ESA Version 4 Application Programming Guide.

Note that if you recompile your PL/I routine with PL/I for MVS & VM and you want
to replace PLITDLI with CEETDLI, you must replace the parameters in the CALL
statement with the actual blocks, instead of the pointer to the blocks as required in
the CALL PLITDLI statement.

SYSTEM(IMS) Compile-Time Option
The SYSTEM(IMS) option, became available in OS PL/I Version 2, was supported
for the PL/I IMS applications only. The main procedure of an IMS application must
use the POINTER data type for its parameters.

If you recompile your main procedure with PL/I for MVS & VM, the object module
assumes that the parameters are passed as BYVALUE. Language Environment
converts the parameters to the BYVALUE style for you if necessary. Therefore, the
parameters are always passed correctly. If you specify OPTIONS(BYADDR) when
you recompile your main procedure with PL/I for MVS & VM, you receives an error
message and the compiler applies BYVALUE instead.

PLICALLA Support in IMS
The OS PL/I PLICALLA entry point is supported under Language Environment.
However, it is not a recommended interface for IMS. Instead you should use the
SYSTEM(IMS) compile-time option and the PLISTART or CEESTART entry point.

Language Environment provides the same support for OS PL/I PLICALLA
applications. However, if you recompile your main load module with PL/I for MVS
& VM and want to continue to use PLICALLA, you must follow additional rules.
See “PLICALLA Considerations” on page 4 for details.

46 Compiler and Run-Time Migration Guide

PSB Language Options Supported
Language Environment for MVS & VM supports PL/I applications with the following
PSBGEN LANG options in the supported releases of IMS:

IMS/ESA Version 4
Table 16 shows support for PSB LANG options in IMS/ESA Version 4.

IMS/ESA Version 3 Re1ease 1
Table 17 shows support for PSB LANG options in IMS/ESA Version 3
Release 1.

Table 16. PSB LANG Options for IMS/ESA Version 4 Release 1

SYSTEM option Entry point LANG=

IMS CEESTART, PLISTART PLI or other values except
PASCAL

IMS PLICALLA1 PLI

Omitted CEESTART, PLISTART Illegal

Omitted PLICALLA1 PLI

Note: 1Supported only for compatibility.

Table 17. PSB LANG Options for IMS/ESA Version 3 Release 1

SYSTEM option Entry point LANG=

IMS CEESTART, PLISTART PLI

IMS PLICALLA1 PLI

Omitted CEESTART, PLISTART Illegal

Omitted PLICALLA1 PLI

Note: 1Supported only for compatibility.

Assembler Driving a PL/I Transaction
If an assembler program is driving a transaction program written in PL/I, assuming
the PSBGEN LANG= option remains unchanged, the following considerations
apply:

� If you recompile the PL/I main program with PL/I for MVS & VM, you must use
the SYSTEM(MVS) compile-time option. In this case, no changes to the
assembler program are required.

� If you do not recompile the main program with PL/I for MVS & VM, the
parameter list format passed from the assembler driver remains unchanged.

Storage Usage Considerations
With IMS/ESA Version 3 Release 1, the parameters passed to the IMS interfaces
are no longer restricted to the area below the 16M line. The parameters will most
likely be placed above the 16M line if you use the following methods:

� Use the ANYWHERE suboption of the HEAP run-time option; it will apply to
variables with the CONTROLLED or BASED attribute because their storage is
obtained from the heap.

� Use the ANYWHERE suboption of the STACK run-time option. If you relink
your OS PL/I application with Language Environment and your application does
not use any edited stream I/O, or you recompile your application with PL/I for

 Chapter 7. Subsystem Considerations 47

MVS & VM, you can use STACK(,,ANYWHERE) if your application is
AMODE(31). In this case, the variables in automatic storage are placed above
the 16M line.

� Place parameters in static storage and make sure the load module attribute
used is RMODE(ANY).

Coordinated Condition Handling under IMS
Language Environment and IMS condition handling is coordinated, meaning that if
a program interrupt or abend occurs when you application is running in an IMS
environment, the Language Environment condition manager is informed whether
the problem occurred in your application or in IMS. If the problem occurs in IMS,
Language Environment, as well as any invoked HLL-specific condition handler,
percolates the condition back to IMS.

With Language Environment run-time option TRAP(ON), Language Environment
continues to support coordinated condition handling for the PLITDLI and ASMTDLI
interface invoked from a PL/I routine.

With IMS/ESA Version 3 with PTF UN4928 or IMS/ESA Version 4, Language
Environment also supports the coordinated condition handling for CEETDLI, CTDLI
from a C routine, CBLTDLI from a COBOL program, AIBTDLI from a PL/I program,
and ASMTDLI from a non-PL/I program.

Note that if a program interrupt or abend occurs in your application outside of IMS,
or if a software condition of severity 2 or greater is raised outside of IMS, the
Language Environment condition manager takes normal condition handling actions
described in Language Environment for MVS & VM Programming Guide. In this
case, in order to give IMS a chance to do database rollback, you must do one of
the following:

� Resolve the error completely so that you application can continue.

� Issue a rollback call to IMS, and then terminate the application.

� Make sure that the application terminates abnormally by using the
ABTERMENC(ABEND) run-time option to transform all abnormal terminations
into system abends in order to cause IMS rollbacks.

� Make sure that the application terminates abnormally by providing a modified
assembler user exit (CEEBXITA) that transform all abnormal terminations into
system abends in order to cause IMS rollbacks.

The assembler user exit you provide should check the return code and reason
code or the CEEAUE_ABTERM bit, and requests an abend by setting the
CEEAUE_ABND flag to ON, if appropriate. See Language Environment for
MVS & VM Programming Guide for details.

48 Compiler and Run-Time Migration Guide

Performance Enhancement with Library Retention(LRR)
If you use LRR, you can get an improvement in performance. See “Improving CPU
Utilization” on page 21 for details.

 DB2 Considerations
There are no special considerations for using DB2 other than the considerations
described in “IMS Considerations” on page 46.

 Chapter 7. Subsystem Considerations 49

Chapter 8. OS PL/I Coexistence with Language Environment

This chapter discusses how you can run your OS PL/I applications under either OS
PL/I or Language Environment. This coexistence gives you the flexibility to migrate
your OS PL/I applications to PL/I for MVS & VM and/or Language Environment
gradually. It's important that you understand how Language Environment supports
OS PL/I object and load modules before you consider the coexistence. For rules
and information on Language Environment's support of OS PL/I object and load
modules, see Chapter 4, “Object and Load Module Considerations” on page 32.

This chapter discusses the following topics:

� Coexistence under MVS non-CICS
� Coexistence under MVS CICS
� Coexistence under VM.

Coexistence under MVS non-CICS
Under MVS, Language Environment can coexist with the OS PL/I library in the
same SMP zone. This enables you to have the Language Environment and OS
PL/I library in your environment at the same time and allows you to use either
run-time by specifying each library in a certain order in your JCL. Which run-time is
used depends on the sequence in which they appear in your JCL and what type of
application you are running.

The following library search order rules apply to non-CICS applications and are
valid only for pure PL/I applications with the same type of load modules.

Table 18. OS PL/I and Language Environment Coexistence Rules for non-CICS
Environment

Type of load module Search sequence Run-time used

OS PL/I load module,
no Shared Library

1. OS PL/I
2. Language Environment

OS PL/I

1. Language Environment
2. OS PL/I

Language Environment

OS PL/I load module,
with OS PL/I Shared Library

1. OS PL/I
2. Language Environment

OS PL/I

1. Language Environment
2. OS PL/I

Not supported

OS PL/I load module,
with replaced Shared Library

1. OS PL/I
2. Language Environment

Not supported

1. Language Environment
2. OS PL/I

Language Environment

OS PL/I object module,
linked with Language Environment

1. OS PL/I
2. Language Environment

Language Environment

1. Language Environment
2. OS PL/I

Language Environment

PL/I for MVS & VM 1. OS PL/I
2. Language Environment

Language Environment

1. Language Environment
2. OS PL/I

Language Environment

50 Copyright IBM Corp. 1964, 1995

If a pure PL/I application contains a mixture of PL/I load modules, the OS PL/I
library and Language Environment library must appear in such order that only one
run-time environment is used by all load modules in the application. For example,
if a PL/I application contains a mixture of any of the following load modules:

� OS PL/I load module, no Shared Library

� OS PL/I object module, linked with Language Environment

� PL/I for MVS & VM load module

Language Environment must always be placed before the OS PL/I library in the
search order.

If your application contains ILC, the search order of Language Environment for
MVS & VM must be correct for all ILC programs in the application.

Coexistence under MVS CICS
CICS allows multiple language run-time environments to coexist in the same CICS
region. Therefore, you can bring up the CICS region with both OS PL/I and
Language Environment. However, if Language Environment exists and the PL/I in
Language Environment is enabled, Language Environment is used for all PL/I
transactions, including OS PL/I. It is only when Language Environment does not
exist or the PL/I component in Language Environment is not enabled, that the OS
PL/I environment is used for OS PL/I transactions. In this case, you cannot run
PL/I for MVS & VM transactions because it requires Language Environment with
the PL/I component enabled. The following table summarizes the coexistence
support for OS PL/I transactions:

The following shows how you can disable the PL/I component from Language
Environment:

� If Language Environment is not installed, do the following:

– Delete CEEEV010 module from CEECCSD located in Language
Environment SCEESAMP

– Run the DFHCSDUP utility with CEECCSD

� If Language Environment is installed, do the following:

– CEDS DELETE PROGRAM(CEEV010), bring down CICS, and start CICS
cold

Table 19. Summary of Coexistence Support under MVS CICS

PPT OS PL/I Language Environment Environment Used

PLI Yes Yes, with PL/I enabled Language Environment

PLI Yes Yes, without PL/I enabled OS PL/I

PLI No Yes, with PL/I enabled Language Environment

PLI No Yes, without PL/I enabled Abend APCL

LE370 Yes Yes, with PL/I enabled Language Environment

LE370 Yes Yes, without PL/I enabled Abend APCL

LE370 No Yes, with PL/I enabled Language Environment

LE370 No Yes, without PL/I enabled Abend APCL

 Chapter 8. OS PL/I Coexistence with Language Environment 51

You must concatenate OS PL/I in front of Language Environment SCEERUN in
DFHRPL in order to use the OS PL/I environment.

Coexistence under VM
Under VM, OS PL/I and Language Environment must be installed on separate
minidisks. Because Language Environment contains relocatable load modules that
are given control by VM before any loadlib or txtlib, you must access only one
minidisk at any one time, depending on which run-time environment you use.

If any portion of Language Environment is installed in nuxleus extension or named
saved segments (NSS), you must always access the minidisk for Language
Environment, that is, you cannot use the OS PL/I environment.

52 Compiler and Run-Time Migration Guide

 Chapter 9. Migration Aids

Language Environment provides you several sample JCL and EXEC located in the
sample library SCEESAMP that can help you to migrate to Language Environment.
The migration aids available with Language Environment are:

� OS PL/I library routine replacement tool

� OS PL/I Version 1 Release 5.1 main load module ZAP

� OS PL/I Shared Library replacement tool

OS PL/I Version 2 Release 3 also provides you a migration aid that helps you to
migrate your PL/I-COBOL ILC applications and PLISRTx applications. The
migration aid is called:

� OS PL/I object module relinking tool - APAR PN69803

You can use the library CSECT names in the load module to identify the functions
that are used in the module. A list of library CSECT names are provided at the end
of this chapter that you can use to identify load modules that you need to take
some actions when you migrate to Language Environment if the load module
contains a function that Language Environment does not support.

OS PL/I Library Routine Replacement Tool
Language Environment does not support OS PL/I Version 1 Release 3.0 - 5.0 load
modules. For those load modules, you can relink the object modules directly with
Language Environment, or you can replace the library routines in the load module
with the Language Environment stubs. See Chapter 4, “Object and Load Module
Considerations” on page 32 for detailed OS PL/I object and load module support.

Language Environment provides two samples located in SCEESAMP that you can
use to replace the library routines in your OS PL/I Version 1 Release 3.0 - 5.1 and
Version 2 load modules with corresponding Language Environment stubs. These
two samples simply contain a list of linkage editor REPLACE control statements to
replace each library routine in your load module with the corresponding stub in
Language Environment.

� IBMWRLK is for MVS non-CICS and VM. You can use it to replace OS PL/I
V1R3.0 - V1R5.1 and V2 load modules, both multitasking and nonmultitasking.
Note that it contains a CHANGE statement to rename the OS PL/I HLL user
exit IBMBINT to CEEBINT.

Under VM, if the load module was created with a LKED command (the load
module resides in a VM LOADLIB), you can use IBMWRLK to replace the load
module.

If the load module was created with the GENMOD command, you cannot use
IBMWRLK to replace the load module.

� IBMWRLKC is for CICS. You can use it to replace OS PL/I V1R3.0 - V1R5.1
and V2 load modules. Note that it contains a CHANGE statement to rename
the OS PL/I HLL user exit IBMBINT to CEEBINT and PLIMAIN to CEEMAIN. It
also contains INCLUDE statements to ensure the load module works under
CICS.

 Copyright IBM Corp. 1964, 1995 53

The CICS macro language is not supported.

The following MVS JCL example shows the replacement of run-time library routines
from a user load module while retaining the user object module. In the example,
MYPDS.LOAD is the data-set name of a load module library that contains the load
module with the name MYLMOD.

//RELINK EXEC PGM=IEWL,PARM='LIST,MAP,XREF,SIZE(3ð72K,4K)',REGION=5M

//SYSPRINT DD SYSOUT=A

//SYSLIB DD DSN=CEE.V1R4Mð.SCEELKED,DISP=SHR

//SAMPLIB DD DSN=CEE.V1R4Mð.SCEESAMP,DISP=SHR

//SYSUT1 DD UNIT=SYSDA,SPACE=(1ð24,(2ðð,2ðð))

//SYSLMOD DD DSN=MYPDS.LOAD,DISP=OLD

//SYSLIN DD \

 INCLUDE SAMPLIB(IBMWRLK)

 INCLUDE SYSLMOD(MYLMOD)

 NAME MYLMOD(R)

If you replace a load module under CICS, the CICS SDFHLOAD dataset must be
specified in the SYSLIB.

The following VM example shows the replacement of run-time library modules from
the user load module MYLMOD which is a member of the VM LOADLIB with the file
name MYLLIB while retaining the user object module. In this example, there must
be a file with a file name of MYTEXT and a file type of TEXT which contains the
following linkage editor control statements:

 INCLUDE SAMPLIB(IBMWRLK)

 INCLUDE MYLLIB(MYLMOD)

 NAME MYLMOD(R)

With MYLLIB LOADLIB on the A disk, the following commands link edit the member
MYLMOD so that it can run with Language Environment for MVS & VM:

FILEDEF MYLLIB DISK MYLLIB LOADLIB A (RECFM U

FILEDEF SAMPLIB DISK SCEESAMP \

LKED MYTEXT (LIST MAP XREF LIBE MYLLIB NAME MYLMOD SIZE 9999K 1ððK NOTERM

FILEDEF \ CLEAR

If the FETCH statement is used, both load modules must use the Shared Library
with equivalent dummy transfer vectors, or neither can use the Shared Library.
This existing rule is described in “Using the Shared Library” in OS PL/I
Programming Guide

OS PL/I Version 1 Release 5.1 Main Load Module ZAP
Language Environment supports OS PL/I Version 1 Release 5.1 main load module
with a restriction that if the main load module is for MVS non-Shared Library,
non-CICS and nonmultitasking, or VM, it must be ZAPped with Language
Environment-provided sample ZAP IBMRZAPM for MVS (or IBMRZAPV for VM)
first. Only the ZAPped main load module is supported by Language Environment.

If you choose not to ZAP your main load module, you can read “OS PL/I Library
Routine Replacement Tool” on page 53 to understand what else you can do. You
can also recompile your application with PL/I for MVS & VM or OS PL/I Version 2.
See Chapter 4, “Object and Load Module Considerations” on page 32 to
understand how Language Environment supports OS PL/I object and load modules.

54 Compiler and Run-Time Migration Guide

The sample ZAP is located in Language Environment SCEESAMP. It is also
available in the IBM Support Center for customers who do not have Language
Environment but want to prepare to migrate to Language Environment.

� IBMRZAPM for MVS non-Shared Library, non-CICS, nonmultitasking

The ZAPped main load module continues to run under OS PL/I Version 1
Release 5.1 and Version 2. If the main load module contains the OS PL/I fast
initialization and termination feature, the feature is supported also. However, in
this case, the ZAPped main load module always dynamically loads the OS PL/I
run-time initialization routine IBMBPIIA once. The dynamically loaded
IBMBPIIA is not deleted until the task terminates. Loading IBMBPIIA
dynamically once while you are using OS PL/I fast initialization and termination
feature might affect the performance of your application. If you put IBMBPIIA in
LPA, the performance effect can be minimized.

The ZAPped main load module is supported by Language Environment.
However, if the load module contains the OS PL/I fast initialization and
termination feature, the feature is not supported by Language Environment.
Language Environment always dynamically loads the initialization and
termination routines. If you put the Language Environment library routines and
CEEBLIIA in LPA(E) as recommended in Language Environment for MVS &
VM Installation and Customization under MVS, the performance effect can be
minimized.

� IBMRZAPV for VM

The ZAPped main load module is NOT supported under OS PL/I Version 1
Release 5.1 or Version 2. It's supported under Language Environment only.

The instructions for how to use the ZAP is described in IBMRZAPM and
IBMRZAPV.

The OS PL/I Version 1 Release 5.1 load module ZAP is also available from the
IBM Support Center for the customers who do not have Language Environment but
want to prepare for migration.

OS PL/I Shared Library Replacement Tool
The library module in the OS PL/I Version 1 Release 5.1 and Version 2 Shared
Library must be replaced with Language Environment stubs in order to support OS
PL/I Version 1 Release 5.1 and Version 2 load modules that use the shared library.

Language Environment provides two sample JCL located in SCEESAMP to help
you to replace the Shared Library:

� IBMRLSLA for OS PL/I Version 1 Release 5.1 MVS CICS or multitasking and
OS PL/I Version 2 Shared Library

� IBMRLSLB for OS PL/I Version 1 Release 5.1 MVS non-CICS nonmultitasking
Shared Library

You must understand how Language Environment supports OS PL/I Shared Library
before you use the JCL. See “Considerations for relinking the Shared Library” on
page 30 and “Load Module Using the Shared Library” on page 33 for detailed OS
PL/I Shared Library and load module support.

 Chapter 9. Migration Aids 55

OS PL/I Object Module Relinking Tool - APARs PN69803
OS PL/I Version 2 Release 3 provides APAR PN69803 help you migrate your
PL/I-COBOL ILC applications and PLISRTx applications.

Language Environment does not support the OS PL/I-COBOL ILC applications.
The OS PL/I object module in the PL/I-COBOL ILC application must be relinked.
See “Differences in Interlanguage Communication Support” on page 19 for the ILC
support under Language Environment. However, if your OS PL/I object module in
the PL/I-COBOL ILC application is relinked with PN69803 the resultant load module
is supported by Language Environment. Therefore, you don't need to relink your
OS PL/I object module in the PL/I-COBOL ILC application with Language
Environment. PN69803 provide you the flexibility that you can prepare the
PL/I-COBOL ILC relinking while you are using OS PL/I Version 2 Release 3. When
you complete the relinking, you can switch to Language Environment whenever you
are ready.

OS PL/I applications that use PLISRTx is supported by Language Environment.
We recommend that you relink the application. See “Differences in PLISRTx
Support” on page 10 for the reasons. The recommended relinking can be done
either with Language Environment or with PN69803 on OS PL/I Version 2 Release
3. Either way will give your load module the benefits of exploiting the Language
Environment DFSORT interface support.

For the PL/I-COBOL ILC applications, before you relink them with PN47774, you
must apply the following PL/I-COBOL ILC APARs to PL/I and COBOL first:

� OS PL/I V2R3 common library: PN36844
� VS COBOL II V1R3.0 library: PN13459
� VS COBOL II V1R3.1 library: PN04721
� VS COBOL II V1R3.2 library: PN09732

Note: VS COBOL II V1R4.0 has the above COBOL APARs in its base code.

If you have not applied the above APARs, PN69803 will not work. Note that the
above APARs are not required if your application does not contain PL/I-COBOL
ILC.

You must be aware that even though your PL/I-COBOL ILC applications are
relinked with PN69803 they might still be required to link with Language
Environment if they contain a function described in this book or in COBOL for MVS
& VM Migration Guide. For example, if the application contains any COBOL
NORES or the load module contains an OS PL/I object module which is not
supported by Language Environment. In the later case, you must recompile your
OS PL/I object module with PL/I for MVS & VM or OS PL/I Version 2.

Identifying Functions Used in an OS PL/I Load Module
You can use the library CSECT names in your OS PL/I load module to identify
certain functions that are used in the module. This can help you to identify load
modules that you need to take some actions when you migrate to Language
Environment if the load module contains a functions that is not supported by
Language Environment.

56 Compiler and Run-Time Migration Guide

Note that some features that are not supported or require relink by Language
Environment cannot be identified by searching the library CSECT names in the load
module.

Table 20. Using CSECTs to Identify Problem Load Modules

CSECT name Module type

IBMBILC1 ILC load module

IBMBIEC1 ILC module in which PL/I calls COBOL

IBMBIEF1 ILC module in which PL/I calls FORTRAN

IBMBIEP1 ILC module in which COBOL or FORTRAN calls PL/I

IBMTPIR1 Multitasking module

IBMBKST1 PLISRTx module

IBMBPII1 Version 1 fast initialization and termination

IBMBPOPT PLIXOPT string options table

IBMBDIM1 PLITEST invocation module

IBMBPSR1 Shared Library addressing module for nonmultitasking

IBMTPSR1 Shared library addressing module for multitasking

 Chapter 9. Migration Aids 57

 Bibliography

PL/I for MVS & VM Publications
� Licensed Program Specifications, GC26-3116

� Installation and Customization under MVS,
SC26-3119

� Compiler and Run-Time Migration Guide,
SC26-3118

� Programming Guide, SC26-3113

� Language Reference, SC26-3114

� Reference Summary, SX26-3821

� Compile-Time Messages and Codes, SC26-3229

� Diagnosis Guide, SC26-3149

Language Environment for MVS
& VM Publications
� Fact Sheet, GC26-4785

� Concepts Guide, GC26-4786

� Licensed Program Specifications, GC26-4774

� Installation and Customization under MVS,
SC26-4817

� Programming Guide, SC26-4818

� Programming Reference, SC26-3312

� Debugging Guide and Run-Time Messages,
SC26-4829

� Writing Interlanguage Communication Applications,
SC26-8351

� Run-Time Migration Guide, SC26-8232

 � Master Index,SC26-3427

PL/I for OS/2 Publications
� Programming Guide, SC26-8001

� Language Reference, SC26-8003

� Reference Summary, SX26-3832

� Built-In Functions, SC26-8089

 � Installation, SX26-3833

� Messages and Codes, SC26-8002

� License Information, GC26-8004

� WorkFrame/2 Guide, SC26-8000

 CoOperative Development
Environment/370
� Fact Sheet, GC09-1861

� General Information, GC09-2048

 � Installation, SC09-1624

� Licensed Program Specifications, GC09-1898

� User's Guide and Reference, SC09-1623

� Using CODE/370 with VS COBOL II and OS PL/I,
SC09-1862

� Self-Study Guide, SC09-2047

IBM Debug Tool
� User's Guide and Reference, SC09-2137

 Softcopy Publications

Online publications are distributed on CD-ROMs and
can be ordered from Mechanicsburg through your IBM
representative. PL/I books are distributed on the
following collection kit:

� Application Development Collection Kit, SK2T-1237

Other Books You Might Need

CICS/ESA

� Application Programming Reference, SC33-0676

DFSORT

� Application Programming Guide, SC33-4035

DFSORT/CMS

� User's Guide, SC26-4361

IMS

� IMS/ESA V4 Application Programming: Database
Manager, SC26-3058

� IMS/ESA V4 Application Programming: Design
Guide, SC26-3066

� IMS/ESA V4 Application Programming: Transaction
Manager, SC26-3063

� IMS/ESA V4 Application Programming: EXEC DL/I
Commands for CICS and IMS, SC26-3062

MVS/DFP

58 Copyright IBM Corp. 1964, 1995

� Access Method Services, SC26-4562

MVS/ESA 4.3 MVS Support for OpenEdition Services
Feature

� Introducing OpenEdition MVS, GC23-3010

� OpenEdition MVS POSIX.1 Conformance
Document, GC23-3011

� OpenEdition MVS User's Guide, SC23-3013

� OpenEdition MVS Command Reference,
SC23-3014

MVS/ESA

� JCL User's Guide, GC28-1473

� JCL Reference, GC28-1479

� System Generation, CG28-1825

� System Programming Library: Initialization and
Tuning Guide, GC28-1451

� System Messages Volume 1, GC28-1480

� System Messages Volume 2, GC28-1481

� System Messages Volume 3, GC28-1482

� System Messages Volume 4, GC28-1483

� System Messages Volume 5, GC28-1484

OS/VS2

� TSO Command Language Reference, GC28-0646

� TSO Terminal User's Guide, GC28-0645

� Job Control Language, GC28-0692

� Message Library: VS2 System Codes, GC38-1008

SMP/E

� User's Guide, SC28-1302

� DBIPO Dialogs User's Guide, SC23-0538

 � Reference, SC28-1107

� Reference Summary, SX22-0006

TCAM

� ACF TCAM Application Programmer's Guide,
SC30-3233

� OS/VS TCAM Concepts and Applications,
GC30-2049

TSO/E

� Command Reference, SC28-1881

VM/ESA

� CMS User's Guide, SC24-5460

� CMS Command Reference, SC24-5461

� CMS Application Development Guide, SC24-5450

� XEDIT User's Guide, SC24-5463

� XEDIT Command and Macro Reference,
SC24-5464

� CP Command and Utility Reference, SC24-5519

 � Installation, SC24-5526

� Service Guide, SC24-5527

� System Messages and Codes, SC24-5529.

 Bibliography 59

 Index

A
abend codes

CICS considerations 45
aid to migration

aid for replacing Shared Library 55
identifying functions used in OS PL/I load

module 56
library routine replacement tool 53
object module relinking tool 56
relinking PLISRTx modules 56
sample ZAP for relinking main load module 54

ALL31 run-time option 18
ASMTDLI IMS interface 46
assembler driving PL/I transaction, IMS

considerations 47
assembler invocation of PL/I 20
assembler language options, IMS considerations 47
assembler support

PLIMAIN entry point 20
PLISTART entry point 20

assembler user exits
changes to 27
CXIT_CODES user 28
CXIT_FLAGS 28
CXIT_FUNC 27
CXIT_LEN 27
CXIT_OPTIONS 28
CXIT_PAGE 28
CXIT_PARM 28
CXIT_REASON 27
CXIT_RETURN 27
CXIT_USERWD 28
CXIT_WORK 28
restrictions 26
rules of precedence at run time 27
specific considerations 28

C
CEEBDATX abend termination exit 30
CEEBINT user exit

support for 29
CEEBXITA user exit 26, 28
CEESTART

CICS considerations 44
CEESTART, using 20
CICS considerations

abend codes used by PL/I 45
CSD file, updating 43
discussion of 43
error handling 43

CICS considerations (continued)
linking PL/I for MVS & VM applications 46
macro-level interface 44
OS PL/I object modules 44
relinking 44
run-time output 45
Shared Library support 45
STACK run-time option, using 45
support for IBMFXITA 44
SYSTEM compile-time option 44

CMPAT compile-time option 38
CODE/370 2
coexistence, OS PL/I with Language

Environment 50—52
under MVS CICS 51
under MVS non-CICS 50
under VM 52

compatibility considerations
OS PL/I version 1 source code 39
PLICALLA entry point 4
PLICALLB entry point 6

compile unit definition 15
compile-time considerations 38—42

CMPAT compile-time option 38
compiler messages

changed 41
discussion of changes 41
new 41
no longer valid 41

installing Language Environment for MVS & VM 38
large arrays and aggregates 38
storage reports 41
user return code 40

compiler messages
changed 41
compile-time considerations 41
discussion of changes 41
new 41
no longer valid 41

condition handling
IMS considerations 48

condition handling differences 13
consideration

link-edit
GENMOD 37

considerations
before migrating 4

condition handling 13
DATE/TIME built-in functions 13
debugging tools 16
ILC differences 19
multitasking facility support 10
OS PL/I coexistence with Language

Environment 50

60 Copyright IBM Corp. 1964, 1995

considerations (continued)
before migrating (continued)

performance retuning 21
PLIDUMP 15
preinitialized program 9
run-time message 15
run-time options 17
storage report 19
storage use retuning 21
user return code 13
using sort program 10

compile-time 38
installation

abend termination exit 30
High-Level Language user exit 29
MVS requirements 25
product configuration 24
product configuration, SCEELKED 25
product configuration, SCEERUN 25
Shared Library, relinking 30
VM requirements 25

link-edit
math routines 37
multitasking, using 37
NCAL linkage editor option 36
PLICALLA and PLICALLB 37
symbol table 36

subsystem
CICS 43
DB2 49
IMS 46

COUNT run-time option 18
CPU utilization, improving 21
CSD file, updating 43
CSECTs

discussion of 56
symbol table 36
using 57

CXIT_CODES 28
CXIT_FLAGS 28
CXIT_FUNC 27
CXIT_LEN 27
CXIT_OPTIONS 28
CXIT_PAGE 28
CXIT_PARM 28
CXIT_REASON 27
CXIT_RETURN 27
CXIT_USERWD 28
CXIT_WORK 28

D
data sets

load module considerations 32
new, MVS 25

DATE/TIME built-in functions 13
DB2 considerations 49
Debug Tool 16
debugging facility for PL/I 2
debugging tools, differences in 16
DEPTHCONDLMT run-time option 18
DFSORT, using 10

E
ERRCOUNT run-time option 18
error handling, CICS considerations 43
EXEC DLI interface 46

F
FLOW run-time option 18

G
GENMOD

link-edit considerations 37
load module considerations 37

H
HEAP run-time option 18
help for migrating OS PL/I applications 53
High-Level Language user exits, using 29

I
IBMBEER user exit, installation considerations 26
IBMBINT user exit

load module considerations 29
support for 29

IBMBXITA user exit 26
IBMFXITA user exit 26

CICS considerations 44
IBMRLSLx, replacing Shared Library 55
IBMWRLKx, replacing library routine 53
ILC (interlanguage communication)

CSECTs, using 57
differences in 19
enabled languages 19

IMS considerations
assembler driving PL/I transaction 47
assembler language options support 47
condition handling 48
discussion of 46
interfaces 46
interfaces to 46
PLICALLA support 46
PSB language options 47
storage usage 47
SYSTEM compile-time option 46

 Index 61

installation considerations
user exits 26

installing Language Environment for MVS & VM,
compile-time considerations 38

interlanguage communication (ILC)
CSECTs, using 57
differences in 19
enabled languages 19

introduction
CODE/370 2
debugging facility 2
Language Environment for MVS & VM library 3
new product names 1
PL/I for MVS & VM library 3
PL/I run-time environment 2
user information 1

ISASIZE run-time option 18

L
Language Environment for MVS & VM library 3
LANGUAGE run-time option 18
large arrays and aggregates, compile-time

considerations 38
library routine replacement tool

using IBMWRLKx 53
link-edit considerations

GENMOD 37
math routines, using 37
multitasking object module 37
NCAL option 36
symbol table 36
symbol tables

CSECT 36
discussion of 36

using NCAL option 36
using PLICALLA entry 37
using PLICALLB entry 37

linking applications under CICS 46
load module

considerations for
data sets 32
OS PL/I Version 2 34

general considerations 32
identifying problem 56
Language Environment support

OS PL/I version 1 prior to release 3.0 34
OS PL/I version 1.3.0 - 1.4.0 34
OS PL/I version 1.5.0 34
OS PL/I version 1.5.1 32
OS PL/I version 2 34

load modules
considerations for

GENMOD 37
IBMBINT user exit 29

M
macro-level interface, CICS considerations 44
main load module relinking aid

using sample ZAP 54
main load module, user

sample ZAP relinking aid 54
math routines, using OS PL/I 37
messages

compiler
changed 41
discussion of changes 41
new 41
no longer valid 41

PLIXOPT string errors
discussion of 42
IEL0950I 42
IEL0951I 42
IEL0952I 42
IEL0953I 42

migration aid
aid for replacing Shared Library 55
identifying functions used in OS PL/I load

module 56
library routine replacement tool 53
object module relinking tool 56
relinking PLISRTx modules 56
sample ZAP for relinking main load module 54

multitasking facility, support of 10

N
name changes to products 1
NCAL linkage editor option 36
new product names 1

O
object and load module considerations 32—35
object module

general considerations 32
Language Environment support

OS PL/I version 1 prior to release 3.0 34
OS PL/I version 1.3.0 - 1.4.0 34
OS PL/I version 1.5.0 34
OS PL/I version 1.5.1 32
OS PL/I version 2 34

object modules
ILC migration aid 56

OS PL/I
version 1

source code compatibility 39
Version 2 load modules 34

62 Compiler and Run-Time Migration Guide

P
performance

CPU utilization 21
retuning for 21
storage utilization 23
under CICS, improving 23
under IMS, improving 23

PL/I dependency on Language Environment 38
PL/I for MVS & VM library 3
PLICALLA entry point

IMS considerations 46
passing parameters 6
support for 4

PLICALLB entry point
passing parameters 9
support for 6

PLIDUMP
output produced by 16

PLIDUMP differences 15
PLIMAIN entry point 20
PLISRTx module relinking tool 56
PLISRTx, using 10
PLISTART entry point 20
PLITDLI IMS interface 46
PLIXOPT string

messages issued
discussion of 42
IEL0950I 42
IEL0951I 42
IEL0952I 42
IEL0953I 42

preinitialized program 9
product configuration

data sets
MVS 25
new 25

discussion of 24
product name changes 1
programs, preinitialized 9
PSB language options, IMS considerations 47

R
relinking

CICS applications 44
relinking OS PL/I-COBOL ILC

using the relinking tool 56
relinking user main load module

sample ZAP relinking aid 54
replacing library routines

using IBMWRLKx 53
replacing OS PL/I Shared Library

sample replacement aid 55
REPORT run-time option 18

retuning applications
CPU utilization 21
storage utilization, improving 23
under IMS, improving 23

run-options comparison, multitasking 11
run-time environment for PL/I 2
run-time message differences 15
run-time options differences 17
run-time output, CICS considerations 45

S
SCEELKED configuration 25
SCEERUN configuration 25
Shared Library replacement aid

using IBMRLSLx 55
Shared Library support 30

CICS considerations 45
Shared Library, OS PL/I

sample replacement aid 55
SPIE run-time option 18
STACK run-time option 18, 45
STAE run-time option 18
storage

reports, compile-time considerations 41
usage

IMS considerations 47
retuning for 21

storage report differences 19
storage utilization, improving 23
subsystem considerations

CICS 43
DB2 49
IMS 46

subsystem performance, improving 23
symbol tables

considerations for 36
CSECT 36

SYSTEM compile-time option
CICS considerations 44
IMS considerations 46

T
TRAP run-time option 18

U
user exits

assembler
changes to 27
CXIT_CODES 28
CXIT_FLAGS 28
CXIT_FUNC 27
CXIT_LEN 27
CXIT_OPTIONS 28
CXIT_PAGE 28

 Index 63

user exits (continued)
assembler (continued)

CXIT_PARM 28
CXIT_REASON 27
CXIT_RETURN 27
CXIT_USERWD 28
CXIT_WORK 28
specific considerations 28

CEEBFXITA 28
CEEBINT 26
CEEBXITA 26, 28
High-Level Language 29
IBMBEER 26
IBMBXITA 26
IBMFXITA 26
installation considerations 26

user main load module
sample ZAP relinking aid 54

user return code differences 13, 40

V
VM

GENMOD 37
INCLUDE command 37
LOAD command 37

X
XUFLOW run-time option 19

Z
ZAP, main load module relinking aid 54

64 Compiler and Run-Time Migration Guide

